Vlerick Repository

A Bi-Population Based Genetic Algorithm for the
Resource-Constrained Project Scheduling Problem

Authors Debels, Dieter;Vanhoucke, Mario

Download date 2025-01-15 14:26:19

Link to Item http://hdl.handle.net/20.500.12127/1685

http://hdl.handle.net/20.500.12127/1685

Vlerick Leuven Gent

Management School

the Autnmmoms Monsgemend Schonl of

[T I..lli'!Fl'!ll_l' iiiml Katholinks Undversaieit Louves

Vlerick Leuven Gent Working Paper Series 2005/8

A BI-POPULATION BASED GENETIC ALGORITHM FOR THE RESOURCE-
CONSTRAINED PROJECT SCHEDULING PROBLEM

DIETER DEBELS1
MARIO VANHOUCKE1

Mario.Vanhoucke@vlerick.be

D/2005/6482/08

A BI-POPULATION BASED GENETIC ALGORITHM FOR THE RESOURCE-
CONSTRAINED PROJECT SCHEDULING PROBLEM

DIETER DEBELS1
Faculty of Economics and Business Administration,
Ghent University
MARIO VANHOUCKE1

Vlerick Leuven Gent Management School

Contact:

Mario Vanhoucke

Vlerick Leuven Gent Management School
Tel: +32 09 210 97 81

Fax: +32 09 210 97 00

Email: Mario.Vanhoucke@vlerick.be

ABSTRACT

The resource-constrained project scheduling prolfRGPSP) is one of the most challenging
problems in project scheduling. During the last meuof years many heuristic procedures
have been developed for this problem, but stilséhprocedures often fail in finding near-
optimal solutions for more challenging problem amstes. In this paper, we present a new
genetic algorithm (GA) that, in contrast of a comv@nal GA, makes use of two separate
populations. This bi-population genetic algorithBPGA) operates on both a population of
left-justified schedules and a population of riggtified schedules in order to fully exploit
the features of the iterative forward/backward leearch scheduling technique. Comparative
computational results reveal that this procedurelmconsidered as today’s best performing
RCPSP heuristic.

1INTRODUCTION

We study the resource-constrained project scheglydnoblem (RCPSP), denoted as
m,1lcpm|Crax USing the classification scheme of [9]. The RCR&#® be stated as follows. In a
project network in AoN format ®{,A), we have a set of nod® and a set of paira,
representing the direct precedence relations. €l sontainsn activities, numbered from O
ton- 1 (N| =n). Furthermore, we have a set of resouRReand for each resource typél R,
there is a constant availabilig throughout the project horizon. Each activityl N has a
deterministic duratiom; (I IN and requires;x [IN units of resource typk We assume that
rik<ax fori 0N andk 00 R. The dummy start and end activities 0 andl have zero duration
and zero resource usage. A schedule defined by am-vector of start times(S = (s, ...,

S»), which implies am-vector of finish timeg$(S) wheref; = s + d;, [Ji O N. A schedules is

said to be feasible if it is nonpreemptive andhié precedence and resource constraints are
satisfied. If none of the activities can be schedubrwards (backwards) due to precedence or
resource constraints, then the schedule is saidetdeft-justified (right-justified). The
objective of the RCPSP is to find a feasible schethat minimizes the project makesgan

2 REPRESENTATION AND GENERATION OF LEFT- AND RIGHT-JUSTIFIED
SCHEDULES

Each RCPSP meta-heuristic relies osclaedule representation to encode a schedule
and aschedule generation scheme (SGS) to decode the schedule representation into a
schedules. For both the representation and generation ohadule various approaches exist.

Although five different methods are given in thededature [13], a schedule
representation is simply a representation of aryistructure between the activities. For our
procedure we use the most frequently used Ei8ivity list (AL) representation where a
sequence of activitied = [Ay, ..., Ay is used to determine the priority of each acfivivhen
Ap =1, we say that activity is at positiornp in the AL. An activityi has a lower priority than
all preceding activities in the sequence and adrighiority than all succeeding activities. An
AL is said to beprecedence-feasible if an activity never comes after the position aem®f its
successors (predecessors) in the list used fogeheration of a left-justified (right-justified)
schedule. In the current paper, we rely on theltgpcal ordering (TO) condition [5, 27] in
our AL representation. Our version of the TO capditand its implementation in our AL is

described in table 1, witph and g the positions of activity andj in an AL. The table

4

illustrates that the TO condition and the impleraéinh depends on the justification of the
schedule (left or right). Since the TO conditiorbased on start and finish times, and hence
uses information from the corresponding schedu&can only incorporate the TO condition
after the schedule generation. In section 3.3,atheantages of the TO condition will be

illustrated on a project example

Insert Table 1 & Figure 1 About Here

Besides different schedule representations, thase &so two different types of SGSs
in the literature; the serial SGS and the par&@IB5. As it is sometimes impossible to reach
an optimal solution with the parallel SGS [17] wat for the serial SGS where all activities
are scheduled one-in-a-time and in the sequentteedAL. Each activity is scheduled as soon
(as late) as possible within the precedence arires constraints to construct a left-justified
(right-justified) schedule. We introduce the examptoject depicted in Fig. 1, with a single
renewable resource type with availabilty= 2. The problem is represented by an activity-on-
the-node network. Corresponding to each activitydepicted the duration on top of the node
and the resource demand below the node. Fig. 2septs a left-justified schedule 1, obtained
by applying a serial SGS on the activity list [1,825, 3, 4, 6, 7, 9]. The incorporation of the
TO-condition on this schedule, leads to the agtilét AL1, depicted at the bottom of Fig.2

Insert Figure 2 About Here

A well-known local search technique for RCPSP niefaristics is the iterative
forward/backward scheduling technique. This techaics introduced by Li and Willis [19]
and successfully implemented in various meta-hgansocedures [1, 5, 11, 23, 24, 25, 26,
28]. The technique is based on the serial SGS aes schedule-information to determine the
AL. Starting from a left-justified schedule, theopedure creates an AL by sorting the
activities in decreasing order of their finish tené.e. the TO condition for left-justified
schedules of table 1). Then, the serial SGS is tsdulild a right-justified schedule. In a
following iteration, the activities are sorted mcreasing order of the start times in the right-
justified schedule (i.e. the TO condition for rigbstified schedules of table 1) and the serial

5

SGS is used to generate a left-justified scheduleloing so, only improvements can occur
for each iteration. The procedure stops when nthdéurimprovements can be obtained.
Assume that schedule 1 of Fig. 2 is our startjleftified schedule with an activity list AL
The iterative forward/backward procedure useslibigo construct a right-justified schedule
with corresponding activity list AL In this list, each activity has been sorted ioréasing
order of their start times. This iteration (seeesiiie 2 of Fig. 3) leads to a makespan
improvement of 2 time units. In a next iteratiohe tprocedure construct the left-justified
schedule 3 with a corresponding activity list Allhe procedure could continue this process
by using the activity list Ak.to construct a right-justified schedule, but ie&sy to see that no

further makespan improvement can be achieved.

Insert Figure 3 About Here

3 THE BI-POPULATION GENETIC ALGORITHM

The evolution of living beings motivated HollandJ1to solve complex optimization
problems by using algorithms that simulate biolagievolution. This approach gave rise to
the technique known as Genetic Algorithm (GA). IGA, processes loosely based on natural
selection, crossover and mutation are repeatedbjieapto one population that represents
potential solutions. In contrast to a regular GAg use the bi-population genetic algorithm
(BPGA) that makes use of two different populaticmgopulatior.JS that only contains left-
justified schedules and a populati®JS that only contains right-justified schedules. Both
populations have the same population size. Theepoe starts with the generation of an
initial LJS, followed by an iterative process that continuesl the stop criterion is satisfied.
The iterative process consecutively adapts the lptpo elements oRJS and LJS. RJS
(LJS) is updated by feeding it with combinations of plapion elements taken fromJS
(RJS) that are scheduled backwards (forwards) withsééregal SGS. This is exactly the reason
why we have chosen to represent a left-justifiedyh{rjustified) schedule with its
corresponding finish (start) times, as shown ingdb The remainder of this section reveals
some further algorithmic details about the consioacof the initial population, parent-

selection, crossover-operator, diversification aakction mechanism of the BPGA.

3.1 Construction of theinitial population

We start the genetic algorithm by building an adigpopulationLJS of left-justified
schedules. Each population element is created mgoraly generating an AL, constructing

the corresponding left-justified schedule and finaicorporating the TO condition of table 1.

3.2 Parent Selection

For each population elemeabf LJS (RJS) we create a set of c right-justified (left-
justified) children that are candidates to efR@8 (LJS). To create a child out @ we select
another parenb from LJS (RJS) by using the 2-tournament selection procedurethla
selection procedure two population-elements arse@ma@andomly, and the element with the
best objective-function value is selected. Aftedgarwe determine randomly whetteeor b

represents the fath&. The other parent represents the mogher

3.3 Generation of a child

A right-justified (left-justified) child is createttom two parents fronbJS (RJS) in
two phases. In both phases, the advantages of Oucofdition implementation are fully
exploited.

Phase 1. the construction of a combined activity list AL som

Based on two parents frobdS (RJS), we use a 2-point crossover operator to generate
the combined activity list A... which is used in phase 2 to construct a rightijest (left-
justified) child S.. To that purpose we select two crossover paipisandcp, as follows.
First, we randomly generate a crossover intefsg@l from [¥%2f,(Sm), %25.(Sw)], wheref,(Sm)
denote the makespan of the mother schedule. Thremamdomly generatgp, from [0, fa(Sy)

- Acp] and seftcp,; = cp; + Acp. The TO condition allows the construction of Al and the
combined schedul&my, by simply copying parts from the AL of the motlaerd the father.
More precisely, we copy all activity positions frahe mother from the intervals [&p;[and
]cpz, N] (see part 1 and part 3 in Fig. 4). The remairangvities from the intervalcpi, cpy]
are copied in Ak... according to their AL ranking of the father (p2rof Fig. 4).

In Fig. 4, we have se&p; andcp; to 4 and 7, and Ad.and Als, represent the activity
lists of the parents in TO-format. The dark-coloeativities from the interval [1, 4] (i.e. 6, 7

and 9) and]7, 9] (i.e. 1 and 3) are copied fronyAhto ALs... The remaining activities (i.e.

2, 5, 8 and 4), displayed in white, are copied iilas..., according to the sequence of AL
i.e. 8,4,2andb5.

Phase 2: the construction of aright-justified (Ieft-justified) child.

The combined schedul&.m, often is neither a left- of right-justified schéelu
Therefore, we transform this combined schedule ankeft-justified (right-justified) schedule,
when the parents belong RIS (LJS), using the SGS. This can be done by running the
iterative forward/backward scheduling proceduretlo® combined schedul&on. In doing
so, only improvements can occur for each partSgfy. In our example of Fig. 4, we
transformSeomp in a right-justified schedul&,, resulting in a makespan improvement of 3

time-units for part 1 and 1 time-unit for part 2.

3.4 Diversification

Diversification is necessary in every genetic athon to avoid the creation of a
homogeneous population. We use a reactive metlaaiity applies diversification to a child
when it comes from two not mutually diverse parefits define whether the parents are
sufficiently diverse, we need a threshaldand a distance measure. Our distance measure
simply takes the sum of absolute deviations betwlenpositions in the activity list of the
father and the activity list of the mother for eativity and divides the obtained value by the
number of non-dummy activities as defined in (livdbsification is desirable if the distance
exceeds the threshotdand is exerted on Abmp by randomly swapping the positions of two

activities fornrd times.

1 (€]
distancéALg ,ALg) = —Z‘positionof iinALg - positionof i in AL g ‘
m n |:1 m
In our example we calculate a distance of 1.55 éetwAls and Alsy, as the sum of

position differences for all activities is 17 aie thumber of non-dummy activities is 9.

3.5 Selection mechanism

The selection mechanism determines the way in wihiemew generation replaces the
old generation. In order to make the genetic algorisuccessful, the ‘survival of the fittest’-
principle should be embedded. Good children shbaige a higher chance to enter in the new

generation than inferior ones in order to imprdwe quality of the population.

The populationRIS (LJS) is fed by children generated fromdS (RJS). In the
following we will explain how we updateJS. The way in which we updatelS is analogue.
As mentioned previously, we generate children for each element bflS. From the set that
is created by th&™ population-element, we select the child with tbedst makespan. This
child will replace the" element oRJS, even if this leads to a deterioration of the nsgiee.
But, in order to prevent that we loose high-quadithedules, we do not automatically replace
the X" element if this corresponds with the best-fouritesiele so far. In this case, we only

perform replacement when the child represents abest+found solution.

4 COMPARATIVE COMPUTATIONAL RESULTS

Insert Table 2 About Here

We have coded the procedure in Visual C++ 6.0 amtbpmed computational tests on
an Acer Travelmate 634LC with a Pentium IV 1.8 Gptpcessor using the well-known
PSPLIB dataset [15] which we use to compare oucgaore with other existing procedures
from the literature. This dataset contains the atdmets J30, J60 and J120 that contain
problem-instances of 30, 60 and 120 activitieseeBpely. We predefined the settings of the
parameters as follows. The number of childnenis fixed at 2, the diversification-parameter
nrd is fixed at the number of activities divided by a0d the threshola for applying

diversification is set equal to 2. The populaticeshas been fine-tuned to an ideal value.

Insert Table 3 About Here

To be able to compare procedures for the RCPSRimidan and Kolisch [8] presented
a methodology in which all procedures can be testethe PSPLIB-datasets by using 1,000
and 5,000 generated schedules as a stop conditidi4] Hartmann and Kolisch give an
update of these results, and also report on 5056B8dules as a schedule limit. In table 2, 3
and 4 we compare our algorithm with these resuwtsthe datasets J30, J60 and J120
respectively. The average deviation from the optisedution is used as a measure of quality
for J30 and the average deviation from the criggsth based lower bound for J60 and J120.

In each table the heuristics are ranked by theesponding deviation for 50,000 schedules.

The results for 5,000 and 1,000 schedules are aseattie-breaker, if necessary. The tables
reveal that our procedure is capable to reportistargly good results. For the datasets J60
and J120 it outperforms all other procedures. QoityJ30, the procedures of Kochetov and
Stolyar [11] and Debels et al. [5] report a slightletter result. Furthermore, our procedure
often generates better solutions for the PSPLIBblpra instances than the best solutions
found so far (based on PSPLIB results on Decembe20B4, see http://www.bwl.uni-
kiel.de/bwlinstitute/Prod/psplib/datasm.html). As example, we obtained 15 improvements
for J120 and with a stop condition of 50,000 schesiun general we conclude that the more
challenging the problem-instances are, the betiepmcedure performs with respect to other
procedures.

Insert Table 4 About Here

The optimal values of the population size usedtlier results of table 2, 3 and 4 are
depicted in table 5. This table reveals that pdmiasize is positively related to the schedule
limit and negatively related to the number of attg. The use of a large population avoids,
similar to diversification, a homogeneous populatiand this becomes more important for

small problem instances and high values for thp stiderion.

Insert Table 5 About Here

5 CONCLUSION

In this paper we presented a genetic algorithmtlier resource-constrained project
scheduling problem (RCPSP) that operates on twaragp populations. The first population
only contains left-justified schedules and the seélcpopulation only contains right-justified
schedules. Our bi-population genetic algorithm (BfP&ombines schedules of the first
population to create children that are candidatenter the second population and vice versa.
In this way the procedure is able to exploit theaadages of a local search technique denoted
as the iterative forward/backward scheduling tegh@i The comparative computational
results on the well-known PSPLIB dataset illustlateat the BPGA is currently the best
meta-heuristic procedure for the RCPSP.

10

10.

REFERENCES

Alcaraz, J., Maroto, C.: A robust genetic algoritfon resource allocation in project
scheduling, Annals of Operations Research, 102,088¢2001).

Baar, T., Brucker, P., Knust, S.: Tabu-search #lgms and lower bounds for the
resource-constrained project scheduling problemtaMeuristics: Advances and

trends in local search paradigms for optimizatibsg (1998).

Bouleimen, K., Lecocq, H.: A new efficient simuldtannealing algorithm for the
resource-constrained project scheduling problem #sdmultiple mode version,
European Journal of Operational Research, 14928382003).

Coelho, J., Tavares, L.. Comparative analysis ofarteeuricstics for the resource
constrained project scheduling problem, Techniogbort, Department of Civil

Engineering, Instituto Superior Tecnico, Portu@4d3).

Debels, D., De Reyck, B., Leus, R., Vanhoucke, Mscatter-search meta-heuristic
for the resource-constrained project schedulingblpra, European Journal of
Operational Research, forthcoming.

Hartmann, S.: A competitive genetic algorithm fbe tresource-constrained project
scheduling, Naval Research Logistics, 45, 733-1998).

Hartmann, S.: A self-adapting genetic algorithmgaooject scheduling under resource
constraints, Naval Research Logistics, 49, 433{2882).

Hartmann, S., Kolisch, R.: Experimental evaluatainstate-of-the-art heuristics for
the resource-constrained project scheduling problEsmopean Journal of Operational
Research, 127, 394-407 (2000).

Herroelen, W., Demeulemeester, E., De Reyck, Blaasification scheme for project
scheduling. In: Weglarz, J. (Ed.), Project Schedpuh Recent Models, Algorithms and
Applications, International Series in Operationss&ech and Management Scignce
Kluwer Academic Publishers, Bostd4, pp. 77-106 (1998).

Holland, J.H., 1975. Adaptation in natural andf&itil systems. The University of
Michigan Press, Ann Arbor

11

11.Kochetov, Y., and Stolyar, A.: Evolutionary loca&asch with variable neighbourhood
for the resource constrained project schedulingolpro, Proceedings of the 3rd

International Workshop of Computer Science andrimfition Technologies (2003).

12.Kolisch, R., Drexl, A.: Adaptive search for solvihgrd project scheduling problems,
Naval Research Logistics, 43, 23—40 (1996).

13.Kolisch, R., Hartmann, S.; Heuristic algorithms &wiving the resource-constrained
project scheduling problem: classification and cataponal analysis. In: Weglarz, J.
(Ed.), Project Scheduling — Recent Models, Alganshand Applications, Kluwer
Academic Publishers, Boston, pp. 147-178 (1999).

14.Kolisch, R., Hartmann, S.: Experimental investigatiof Heuristics for resource-
constrained project scheduling: an update, worlpager, Technical University of
Munich (2004).

15.Kolisch, R., Sprecher, A.: PSPLIB - A project schky library, European Journal of
Operational Research, 96, 205-216 (1996).

16.Kolisch, R.: Project scheduling under resource tairgs — Efficient heuristics for

several problem classes, Physica (1995).

17.Kolisch, R.: Serial and parallel resource-constdirproject scheduling methods
revisited: theory and computation, European Jouwh&perational Research, 43, 23-
40 (1996).

18.Kolisch, R.: Efficient priority rules for the resme-constrained project scheduling
problem, Journal of Operations Management, 14, 1921996).

19.Li, K.Y., Willis, R.J.: An iterative scheduling teoique for resource-constrained

project schedulingeuropean Journal of Operational Research, 56, 3B0B92).

20.Merkle, D., Middendorf, M., Schmeck, H.: Ant colorgptimization for resource
constrained project scheduling, IEEE TransactiorfEwalutionary Computation, 6(4),
333-346 (2002).

12

21.Nonobe, K., Ibaraki, T.: Formulation and tabu skasadgorithm for the resource
constrained project scheduling problem (RCPSP)RIbeiro, C.C., Hansen, P. (Eds.),
Essays and Surveys in Meta-heuristics, Kluwer Anadéublishers, Boston, pp. 557-
588 (2002).

22.Schirmer, A.: Case-based reasoning and improvegtimdasearch for project
scheduling, Naval Research Logistics, 47, 201-2PDR(@).

23.Tormos, P., Lova, A.: A competitive heuristic sodat technique for resource-

constrained project scheduling, Annals of OperatiBesearch, 102, 65-81 (2001).

24.Tormos, P., Lova, A.: An efficient multi-pass hestic for project scheduling with
constrained resources, International Journal oflfRttion Research, 41, 1071-1086
(2003).

25.Tormos, P., and Lova, A.: Integrating heuristics fesource constrained project
scheduling: One step forward, Technical report, &&pent of Statistics and

Operations Research, Universidad Polit"ecnica derd# (2003).

26.Valls, V., Ballestin, F., Quintanilla, S.: A hybrgknetic algorithm for the Resource-
constrained project scheduling problem with thekpeeossover operator, Eighth
International Workshop on Project Management arite®&aling, 368-371 (2002).

27.Valls, V., Quintanilla, S., Ballestin, F.: Resowamnstrained project scheduling: a
critical activity reordering heuristic, Europearudmal of Operational Research, 149,
282-301 (2003).

28.Valls, V., Ballestin, F., Quintanilla, S.: A poptitan-based approach to the resource-
constrained project scheduling problem, Annals pé@tions Research, 131, 305-324
(2004).

29.Valls, V., Ballestin, F.: Quintanilla, S.: Justiditon and RCPSP: A technique that

pays, European Journal of Operational Researclihdéaning.

30.Leon V. J., Ramamoorthy, B.: Strength and adaptabdf problem-space based

neighbourhoods for resource-constrained sche

13

Incorporation of TO condition

TABLE 1

Justification of | TO condition implementation of TO in AL

schedule

Right-justified s<s=>p<q sort activities in increasing order of their
schedule start times

Left-justified fi>fi=p<q sort activities in decreasing order of their
schedule finish times

14

Example project

FIGURE 1

15

FIGURE 1.

A left-justified schedule and the corresponding AL after incorporation of the TO-
condition

Schedule 1

T T T T T T 7T
8 9 10 11 12 13 14 15 16 17 18 19 20

,4,8,3,2,1,5]

16

FIGURE 2

Theiterative forward/backward scheduling technique

Schedule 22

8 5| 6
1 2 7
1 3|4 9

T T T T T 1 T T LI
01 2 3 456 7 8 9 101112 13 14 1516 17 18 19 20

AL, [1,2,3,8,4,7,5,9, 6]

Schedule 3

3 8 6
1 2 7
1 4 15 9

T LI — T T LI —
012 3 456 7 8 9 10 1112 13 14 15 16 17 18 19 20

AL, [9,6,7,5,8, 4, 21,3]

FIGURE 3

Crossover operator

S , . S,
AL, =[006.8.4.7 2 B3]

T

4] 8
./ 0 e

T T T
o1 34567891011121314151617181920 01234557891011121314151617151920

Phase 1: § Phase 2: S,

comb
2
3 4 5/ 6
1 2 7
1 8 9
' —

AL, _[976]8425113

6 7 8 9 101112 1314151617131920

I
D12345678910H121314151E|7161920 0123 4
part 3 part 2 part 1 part3 part 2 part 1

18

TABLE 2

Comparativeresultsfor J30

max. #schedules

Algorithm 1,000 5,000 50,000
Kochetov and Stolyar [11] 0.10 0.04 0.00
Debels et al. [5] 0.27 0.11 0.01
Our procedure 0.17 0.06 0.02
Valls et al. [26] 0.27 0.06 0.02
Alcaraz and Maroto [1] 0.33 0.12 -
Valls et al.[29] 0.34 0.20 0.02
Tormos and Lova [25] 0.25 0.13 0.05
Nonobe and Ibaraki [21] 0.46 0.16 0.05
Tormos and Lova [23] 0.30 0.16 0.07
Hartmann [7] 0.38 0.22 0.08
Hartmann [6] 0.54 0.25 0.08
Tormos and Lova [24] 0.30 0.17 0.09
Valls et al. [29] 0.46 0.28 0.11
Bouleimen and Lecocq [3] 0.38 0.23 -
Coelho and Tavares [4] 0.74 0.33 0.16
Schirmer [22] 0.65 0.44 -
Baar et al. [2] 0.86 0.44 -
Kolisch and Drexl [12] 0.74 0.52 -
Hartmann [6] 1.03 0.56 0.23
Kolisch [17] 0.83 0.53 0.27
Coelho and Tavares [4] 0.81 0.54 0.28
Kolisch [16] 1.44 1.00 0.51
Kolisch [17] 1.05 0.78 0.56
Hartmann [6] 1.38 1.12 0.88
Kolisch [17, 18] 1.40 1.28 -
Kolisch [17] 1.40 1.29 1.13
Kolisch [16] 1.77 1.48 1.22
Leon and Ramamoorthy [30] 2.08 1.59 -

19

TABLE 3

Comparativeresultsfor J60

max. #schedules

Algorithm 1,000 5,000 50,000
Our procedure 11.45 11.00 10.69
Debels et al. [5] 11.73 11.10 10.71
Valls et al. [26] 11.56 11.10 10.73
Kochetov and Stolyar [11] 11.71 11.17 10.74
Valls et al. [29] 12.21 11.27 10.74
Hartmann [7] 12.21 11.70 11.21
Hartmann [6] 12.68 11.89 11.23
Tormos and Lova [25] 11.88 11.62 11.36
Tormos and Lova [24] 12.14 11.82 11.47
Alcaraz and Maroto [1] 12.57 11.86 -

Tormos and Lova [23] 12.18 11.87 11.54
Bouleimen and Lecocq [3] 12.75 11.90 -

Nonobe and Ibaraki [21] 12.97 12.18 11.58
Valls et al. [29] 12.73 12.35 11.94
Schirmer [22] 12.94 12.58 -

Coelho and Tavares [4] 13.28 12.63 11.94
Hartmann [6] 14.68 13.32 12.25
Hartmann [6] 13.30 12.74 12.26
Kolisch and Drex| [12] 13.51 13.06 -

Kolisch [17, 18] 13.66 13.21 -

Coelho and Tavares [4] 13.80 13.31 12.83
Kolisch [17] 13.75 13.34 12.84
Kolisch [17] 13.59 13.23 12.85
Baar et al. [2] 13.80 13.48 -

Leon and Ramamoorthy [30] 14.33 13.49 -

Kolisch [17] 13.96 13.53 12.97
Kolisch [16] 14.89 14.30 13.66
Kolisch [16] 15.94 15.17 14.22

20

TABLE 4

Comparativeresultsfor J120

max. #schedules

Algorithm 1,000 5,000 50,000
Our procedure 34.29 32.34 30.75
Valls et al. [26] 34.07 32.54 31.24
Debels et al. [5] 35.22 33.10 31.57
Valls et al. [29] 35.39 33.24 31.58
Kochetov and Stolyar [11] 34.74 33.36 32.06
Valls et al. (29) 35.18 34.02 32.81
Hartmann [7] 37.19 35.39 33.21
Tormos and Lova [25] 35.01 34.41 33.71
Merkle et al. [20] - 35.43 -

Hartmann [6] 39.37 36.74 34.03
Tormos and Lova [24] 36.24 35.56 34.77
Tormos and Lova [23] 36.49 35.81 35.01
Alcaraz and Maroto [1] 39.36 36.57 -

Nonobe and Ibaraki [21] 40.86 37.88 35.85
Coelho and Tavares [4] 39.97 38.41 36.44
Valls et al. [29] 38.21 37.47 36.46
Bouleimen and Lecocq [3] 42.81 37.68 -

Hartmann [6] 39.93 38.49 36.51
Schirmer [22] 39.85 38.70 -

Kolisch [17] 39.60 38.75 37.74
Kolisch (17, 18) 39.65 38.77 -

Hartmann [6] 45.82 42.25 38.83
Kolisch [17] 41.27 40.38 39.34
Kolisch and Drexl [12] 41.37 40.45 -

Coelho and Tavares [4] 41.36 40.46 39.41
Leon and Ramamoorthy [30] 4291 40.69 -

Kolisch [17] 42.84 41.84 40.63
Kolisch [16] 44.46 43.05 41.44

Kolisch [16] 49.25 47.61 45.60

TABLES

Optimal values of thepopulation size

max. #schedules

Dataset 1,000 5,000 50,000

J30 55 112 416
J60 30 71 390
J120 20 60 290

22

