
Vlerick Repository
A Bi-Population Based Genetic Algorithm for the

Resource-Constrained Project Scheduling Problem

Authors Debels, Dieter;Vanhoucke, Mario

Download date 2025-01-15 14:26:19

Link to Item http://hdl.handle.net/20.500.12127/1685

http://hdl.handle.net/20.500.12127/1685

D/2005/6482/08

Vlerick Leuven Gent Working Paper Series 2005/8

A BI-POPULATION BASED GENETIC ALGORITHM FOR THE RESOURCE-

CONSTRAINED PROJECT SCHEDULING PROBLEM

DIETER DEBELS1

MARIO VANHOUCKE1

Mario.Vanhoucke@vlerick.be

2

A BI-POPULATION BASED GENETIC ALGORITHM FOR THE RESOURCE-

CONSTRAINED PROJECT SCHEDULING PROBLEM

DIETER DEBELS1

Faculty of Economics and Business Administration,

Ghent University

MARIO VANHOUCKE1

Vlerick Leuven Gent Management School

Contact:

Mario Vanhoucke

Vlerick Leuven Gent Management School

Tel: +32 09 210 97 81

Fax: +32 09 210 97 00

Email: Mario.Vanhoucke@vlerick.be

3

ABSTRACT

The resource-constrained project scheduling problem (RCPSP) is one of the most challenging

problems in project scheduling. During the last couple of years many heuristic procedures

have been developed for this problem, but still these procedures often fail in finding near-

optimal solutions for more challenging problem instances. In this paper, we present a new

genetic algorithm (GA) that, in contrast of a conventional GA, makes use of two separate

populations. This bi-population genetic algorithm (BPGA) operates on both a population of

left-justified schedules and a population of right-justified schedules in order to fully exploit

the features of the iterative forward/backward local search scheduling technique. Comparative

computational results reveal that this procedure can be considered as today’s best performing

RCPSP heuristic.

4

1 INTRODUCTION

We study the resource-constrained project scheduling problem (RCPSP), denoted as

m,1|cpm|Cmax using the classification scheme of [9]. The RCPSP can be stated as follows. In a

project network in AoN format G(N,A), we have a set of nodes N and a set of pairs A,

representing the direct precedence relations. The set N contains n activities, numbered from 0

to n - 1 (|N| = n). Furthermore, we have a set of resources R, and for each resource type k ∈ R,

there is a constant availability ak throughout the project horizon. Each activity i ∈ N has a

deterministic duration di ∈ IN and requires rik ∈ IN units of resource type k. We assume that

rik ≤ ak for i ∈ N and k ∈ R. The dummy start and end activities 0 and n - 1 have zero duration

and zero resource usage. A schedule S is defined by an n-vector of start times s(S) = (s0, ...,

sn), which implies an n-vector of finish times f(S) where fi = si + di, ∀ �i ∈ N. A schedule S is

said to be feasible if it is nonpreemptive and if the precedence and resource constraints are

satisfied. If none of the activities can be scheduled forwards (backwards) due to precedence or

resource constraints, then the schedule is said to be left-justified (right-justified). The

objective of the RCPSP is to find a feasible schedule that minimizes the project makespan fn.

2 REPRESENTATION AND GENERATION OF LEFT- AND RIGHT-JUSTIFIED

SCHEDULES

Each RCPSP meta-heuristic relies on a schedule representation to encode a schedule

and a schedule generation scheme (SGS) to decode the schedule representation into a

schedule S. For both the representation and generation of a schedule various approaches exist.

Although five different methods are given in the literature [13], a schedule

representation is simply a representation of a priority-structure between the activities. For our

procedure we use the most frequently used [13] activity list (AL) representation where a

sequence of activities λλλλ = [λ1, …, λn] is used to determine the priority of each activity. When

λp = i, we say that activity i is at position p in the AL. An activity i has a lower priority than

all preceding activities in the sequence and a higher priority than all succeeding activities. An

AL is said to be precedence-feasible if an activity never comes after the position of one of its

successors (predecessors) in the list used for the generation of a left-justified (right-justified)

schedule. In the current paper, we rely on the topological ordering (TO) condition [5, 27] in

our AL representation. Our version of the TO condition and its implementation in our AL is

described in table 1, with p and q the positions of activity i and j in an AL. The table

5

illustrates that the TO condition and the implementation depends on the justification of the

schedule (left or right). Since the TO condition is based on start and finish times, and hence

uses information from the corresponding schedule, we can only incorporate the TO condition

after the schedule generation. In section 3.3, the advantages of the TO condition will be

illustrated on a project example

Insert Table 1 & Figure 1 About Here

Besides different schedule representations, there exist also two different types of SGSs

in the literature; the serial SGS and the parallel SGS. As it is sometimes impossible to reach

an optimal solution with the parallel SGS [17] we opt for the serial SGS where all activities

are scheduled one-in-a-time and in the sequence of the AL. Each activity is scheduled as soon

(as late) as possible within the precedence and resource constraints to construct a left-justified

(right-justified) schedule. We introduce the example project depicted in Fig. 1, with a single

renewable resource type with availability a1 = 2. The problem is represented by an activity-on-

the-node network. Corresponding to each activity we depicted the duration on top of the node

and the resource demand below the node. Fig. 2 represents a left-justified schedule 1, obtained

by applying a serial SGS on the activity list [1, 2, 8, 5, 3, 4, 6, 7, 9]. The incorporation of the

TO-condition on this schedule, leads to the activity list AL1, depicted at the bottom of Fig.2

Insert Figure 2 About Here

A well-known local search technique for RCPSP meta-heuristics is the iterative

forward/backward scheduling technique. This technique is introduced by Li and Willis [19]

and successfully implemented in various meta-heuristic procedures [1, 5, 11, 23, 24, 25, 26,

28]. The technique is based on the serial SGS and uses schedule-information to determine the

AL. Starting from a left-justified schedule, the procedure creates an AL by sorting the

activities in decreasing order of their finish times (i.e. the TO condition for left-justified

schedules of table 1). Then, the serial SGS is used to build a right-justified schedule. In a

following iteration, the activities are sorted in increasing order of the start times in the right-

justified schedule (i.e. the TO condition for right-justified schedules of table 1) and the serial

6

SGS is used to generate a left-justified schedule. In doing so, only improvements can occur

for each iteration. The procedure stops when no further improvements can be obtained.

Assume that schedule 1 of Fig. 2 is our start left-justified schedule with an activity list AL1.

The iterative forward/backward procedure uses this list to construct a right-justified schedule

with corresponding activity list AL2. In this list, each activity has been sorted in increasing

order of their start times. This iteration (see schedule 2 of Fig. 3) leads to a makespan

improvement of 2 time units. In a next iteration, the procedure construct the left-justified

schedule 3 with a corresponding activity list AL3. The procedure could continue this process

by using the activity list AL3 to construct a right-justified schedule, but it is easy to see that no

further makespan improvement can be achieved.

Insert Figure 3 About Here

3 THE BI-POPULATION GENETIC ALGORITHM

The evolution of living beings motivated Holland [10] to solve complex optimization

problems by using algorithms that simulate biological evolution. This approach gave rise to

the technique known as Genetic Algorithm (GA). In a GA, processes loosely based on natural

selection, crossover and mutation are repeatedly applied to one population that represents

potential solutions. In contrast to a regular GA, we use the bi-population genetic algorithm

(BPGA) that makes use of two different populations: a population LJS that only contains left-

justified schedules and a population RJS that only contains right-justified schedules. Both

populations have the same population size. The procedure starts with the generation of an

initial LJS, followed by an iterative process that continues until the stop criterion is satisfied.

The iterative process consecutively adapts the population elements of RJS and LJS. RJS

(LJS) is updated by feeding it with combinations of population elements taken from LJS

(RJS) that are scheduled backwards (forwards) with the serial SGS. This is exactly the reason

why we have chosen to represent a left-justified (right-justified) schedule with its

corresponding finish (start) times, as shown in table 1. The remainder of this section reveals

some further algorithmic details about the construction of the initial population, parent-

selection, crossover-operator, diversification and selection mechanism of the BPGA.

7

3.1 Construction of the initial population

We start the genetic algorithm by building an initial population LJS of left-justified

schedules. Each population element is created by randomly generating an AL, constructing

the corresponding left-justified schedule and finally incorporating the TO condition of table 1.

3.2 Parent Selection

For each population element a of LJS (RJS) we create a set of nrc right-justified (left-

justified) children that are candidates to enter RJS (LJS). To create a child out of a, we select

another parent b from LJS (RJS) by using the 2-tournament selection procedure. In this

selection procedure two population-elements are chosen randomly, and the element with the

best objective-function value is selected. Afterwards, we determine randomly whether a or b

represents the father Sf. The other parent represents the mother Sm.

3.3 Generation of a child

A right-justified (left-justified) child is created from two parents from LJS (RJS) in

two phases. In both phases, the advantages of our TO-condition implementation are fully

exploited.

Phase 1: the construction of a combined activity list ALScomb

Based on two parents from LJS (RJS), we use a 2-point crossover operator to generate

the combined activity list ALScomb which is used in phase 2 to construct a right-justified (left-

justified) child Sc. To that purpose we select two crossover points cp1 and cp2 as follows.

First, we randomly generate a crossover interval ∆cp from [¼.fn(Sm), ¾.fn(Sm)], where fn(Sm)

denote the makespan of the mother schedule. Then, we randomly generate cp1 from [0, fn(Sm)

- ∆cp] and set cp2 = cp1 + ∆cp. The TO condition allows the construction of ALScomb, and the

combined schedule Scomb, by simply copying parts from the AL of the mother and the father.

More precisely, we copy all activity positions from the mother from the intervals [1, cp1[and

]cp2, n] (see part 1 and part 3 in Fig. 4). The remaining activities from the interval [cp1, cp2]

are copied in ALScomb according to their AL ranking of the father (part 2 of Fig. 4).

In Fig. 4, we have set cp1 and cp2 to 4 and 7, and ALSf and ALSm represent the activity

lists of the parents in TO-format. The dark-colored activities from the interval [1, 4[(i.e. 6, 7

and 9) and]7, 9] (i.e. 1 and 3) are copied from ALSm into ALScomb. The remaining activities (i.e.

8

2, 5, 8 and 4), displayed in white, are copied into ALScomb according to the sequence of ALSf,

i.e. 8, 4, 2 and 5.

Phase 2: the construction of a right-justified (left-justified) child.

The combined schedule Scomb often is neither a left- of right-justified schedule.

Therefore, we transform this combined schedule into a left-justified (right-justified) schedule,

when the parents belong to RJS (LJS), using the SGS. This can be done by running the

iterative forward/backward scheduling procedure on the combined schedule Scomb. In doing

so, only improvements can occur for each part of Scomb. In our example of Fig. 4, we

transform Scomb in a right-justified schedule Sc, resulting in a makespan improvement of 3

time-units for part 1 and 1 time-unit for part 2.

3.4 Diversification

Diversification is necessary in every genetic algorithm to avoid the creation of a

homogeneous population. We use a reactive method that only applies diversification to a child

when it comes from two not mutually diverse parents. To define whether the parents are

sufficiently diverse, we need a threshold τ and a distance measure. Our distance measure

simply takes the sum of absolute deviations between the positions in the activity list of the

father and the activity list of the mother for each activity and divides the obtained value by the

number of non-dummy activities as defined in (1). Diversification is desirable if the distance

exceeds the threshold τ and is exerted on ALcomb by randomly swapping the positions of two

activities for nrd times.

∑
=

=
n

i

ii
n 1

SS mf
AL in of position-AL in of position

1
ALALdistance),(

mf SS
(1)

In our example we calculate a distance of 1.55 between ALSf and ALSm as the sum of

position differences for all activities is 17 and the number of non-dummy activities is 9.

3.5 Selection mechanism

The selection mechanism determines the way in which the new generation replaces the

old generation. In order to make the genetic algorithm successful, the ‘survival of the fittest’-

principle should be embedded. Good children should have a higher chance to enter in the new

generation than inferior ones in order to improve the quality of the population.

9

The population RJS (LJS) is fed by children generated from LJS (RJS). In the

following we will explain how we update RJS. The way in which we update LJS is analogue.

As mentioned previously, we generate nrc children for each element of LJS. From the set that

is created by the xth population-element, we select the child with the lowest makespan. This

child will replace the xth element of RJS, even if this leads to a deterioration of the makespan.

But, in order to prevent that we loose high-quality schedules, we do not automatically replace

the xth element if this corresponds with the best-found schedule so far. In this case, we only

perform replacement when the child represents a new best-found solution.

4 COMPARATIVE COMPUTATIONAL RESULTS

Insert Table 2 About Here

We have coded the procedure in Visual C++ 6.0 and performed computational tests on

an Acer Travelmate 634LC with a Pentium IV 1.8 GHz processor using the well-known

PSPLIB dataset [15] which we use to compare our procedure with other existing procedures

from the literature. This dataset contains the subdatasets J30, J60 and J120 that contain

problem-instances of 30, 60 and 120 activities respectively. We predefined the settings of the

parameters as follows. The number of children nrc is fixed at 2, the diversification-parameter

nrd is fixed at the number of activities divided by 10 and the threshold τ for applying

diversification is set equal to 2. The population size has been fine-tuned to an ideal value.

Insert Table 3 About Here

To be able to compare procedures for the RCPSP, Hartmann and Kolisch [8] presented

a methodology in which all procedures can be tested on the PSPLIB-datasets by using 1,000

and 5,000 generated schedules as a stop condition. In [14] Hartmann and Kolisch give an

update of these results, and also report on 50,000 schedules as a schedule limit. In table 2, 3

and 4 we compare our algorithm with these results for the datasets J30, J60 and J120

respectively. The average deviation from the optimal solution is used as a measure of quality

for J30 and the average deviation from the critical path based lower bound for J60 and J120.

In each table the heuristics are ranked by the corresponding deviation for 50,000 schedules.

10

The results for 5,000 and 1,000 schedules are used as a tie-breaker, if necessary. The tables

reveal that our procedure is capable to report consistently good results. For the datasets J60

and J120 it outperforms all other procedures. Only for J30, the procedures of Kochetov and

Stolyar [11] and Debels et al. [5] report a slightly better result. Furthermore, our procedure

often generates better solutions for the PSPLIB problem instances than the best solutions

found so far (based on PSPLIB results on December 3, 2004, see http://www.bwl.uni-

kiel.de/bwlinstitute/Prod/psplib/datasm.html). As an example, we obtained 15 improvements

for J120 and with a stop condition of 50,000 schedules. In general we conclude that the more

challenging the problem-instances are, the better our procedure performs with respect to other

procedures.

Insert Table 4 About Here

The optimal values of the population size used for the results of table 2, 3 and 4 are

depicted in table 5. This table reveals that population size is positively related to the schedule

limit and negatively related to the number of activities. The use of a large population avoids,

similar to diversification, a homogeneous population, and this becomes more important for

small problem instances and high values for the stop criterion.

Insert Table 5 About Here

5 CONCLUSION

In this paper we presented a genetic algorithm for the resource-constrained project

scheduling problem (RCPSP) that operates on two separate populations. The first population

only contains left-justified schedules and the second population only contains right-justified

schedules. Our bi-population genetic algorithm (BPGA) combines schedules of the first

population to create children that are candidate to enter the second population and vice versa.

In this way the procedure is able to exploit the advantages of a local search technique denoted

as the iterative forward/backward scheduling technique. The comparative computational

results on the well-known PSPLIB dataset illustrated that the BPGA is currently the best

meta-heuristic procedure for the RCPSP.

11

REFERENCES

1. Alcaraz, J., Maroto, C.: A robust genetic algorithm for resource allocation in project

scheduling, Annals of Operations Research, 102, 83-109 (2001).

2. Baar, T., Brucker, P., Knust, S.: Tabu-search algorithms and lower bounds for the

resource-constrained project scheduling problem, Meta-heuristics: Advances and

trends in local search paradigms for optimization, 1–8 (1998).

3. Bouleimen, K., Lecocq, H.: A new efficient simulated annealing algorithm for the

resource-constrained project scheduling problem and its multiple mode version,

European Journal of Operational Research, 149, 268-281 (2003).

4. Coelho, J., Tavares, L.: Comparative analysis of meta–heuricstics for the resource

constrained project scheduling problem, Technical report, Department of Civil

Engineering, Instituto Superior Tecnico, Portugal (2003).

5. Debels, D., De Reyck, B., Leus, R., Vanhoucke, M.: A scatter-search meta-heuristic

for the resource-constrained project scheduling problem, European Journal of

Operational Research, forthcoming.

6. Hartmann, S.: A competitive genetic algorithm for the resource-constrained project

scheduling, Naval Research Logistics, 45, 733-750 (1998).

7. Hartmann, S.: A self-adapting genetic algorithm for project scheduling under resource

constraints, Naval Research Logistics, 49, 433-448 (2002).

8. Hartmann, S., Kolisch, R.: Experimental evaluation of state-of-the-art heuristics for

the resource-constrained project scheduling problem, European Journal of Operational

Research, 127, 394-407 (2000).

9. Herroelen, W., Demeulemeester, E., De Reyck, B.: A classification scheme for project

scheduling. In: Weglarz, J. (Ed.), Project Scheduling – Recent Models, Algorithms and

Applications, International Series in Operations Research and Management Science,

Kluwer Academic Publishers, Boston, 14, pp. 77-106 (1998).

10. Holland, J.H., 1975. Adaptation in natural and artificial systems. The University of

Michigan Press, Ann Arbor.

12

11. Kochetov, Y., and Stolyar, A.: Evolutionary local search with variable neighbourhood

for the resource constrained project scheduling problem, Proceedings of the 3rd

International Workshop of Computer Science and Information Technologies (2003).

12. Kolisch, R., Drexl, A.: Adaptive search for solving hard project scheduling problems,

Naval Research Logistics, 43, 23–40 (1996).

13. Kolisch, R., Hartmann, S.; Heuristic algorithms for solving the resource-constrained

project scheduling problem: classification and computational analysis. In: Weglarz, J.

(Ed.), Project Scheduling – Recent Models, Algorithms and Applications, Kluwer

Academic Publishers, Boston, pp. 147-178 (1999).

14. Kolisch, R., Hartmann, S.: Experimental investigation of Heuristics for resource-

constrained project scheduling: an update, working paper, Technical University of

Munich (2004).

15. Kolisch, R., Sprecher, A.: PSPLIB - A project scheduling library, European Journal of

Operational Research, 96, 205-216 (1996).

16. Kolisch, R.: Project scheduling under resource constraints — Efficient heuristics for

several problem classes, Physica (1995).

17. Kolisch, R.: Serial and parallel resource-constrained project scheduling methods

revisited: theory and computation, European Journal of Operational Research, 43, 23-

40 (1996).

18. Kolisch, R.: Efficient priority rules for the resource-constrained project scheduling

problem, Journal of Operations Management, 14, 179–192 (1996).

19. Li, K.Y., Willis, R.J.: An iterative scheduling technique for resource-constrained

project scheduling, European Journal of Operational Research, 56, 370-379 (1992).

20. Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource

constrained project scheduling, IEEE Transaction on Evolutionary Computation, 6(4),

333-346 (2002).

13

21. Nonobe, K., Ibaraki, T.: Formulation and tabu search algorithm for the resource

constrained project scheduling problem (RCPSP). In: Ribeiro, C.C., Hansen, P. (Eds.),

Essays and Surveys in Meta-heuristics, Kluwer Academic Publishers, Boston, pp. 557-

588 (2002).

22. Schirmer, A.: Case–based reasoning and improved adaptive search for project

scheduling, Naval Research Logistics, 47, 201–222 (2000).

23. Tormos, P., Lova, A.: A competitive heuristic solution technique for resource-

constrained project scheduling, Annals of Operations Research, 102, 65-81 (2001).

24. Tormos, P., Lova, A.: An efficient multi-pass heuristic for project scheduling with

constrained resources, International Journal of Production Research, 41, 1071-1086

(2003).

25. Tormos, P., and Lova, A.: Integrating heuristics for resource constrained project

scheduling: One step forward, Technical report, Department of Statistics and

Operations Research, Universidad Polit´ecnica de Valencia (2003).

26. Valls, V., Ballestín, F., Quintanilla, S.: A hybrid genetic algorithm for the Resource-

constrained project scheduling problem with the peak crossover operator, Eighth

International Workshop on Project Management and Scheduling, 368-371 (2002).

27. Valls, V., Quintanilla, S., Ballestín, F.: Resource-constrained project scheduling: a

critical activity reordering heuristic, European Journal of Operational Research, 149,

282-301 (2003).

28. Valls, V., Ballestín, F., Quintanilla, S.: A population-based approach to the resource-

constrained project scheduling problem, Annals of Operations Research, 131, 305-324

(2004).

29. Valls, V., Ballestin, F.: Quintanilla, S.: Justification and RCPSP: A technique that

pays, European Journal of Operational Research, Forthcoming.

30. Leon V. J., Ramamoorthy, B.: Strength and adaptability of problem-space based

neighbourhoods for resource-constrained sche

14

TABLE 1

Incorporation of TO condition

Justification of
schedule

TO condition implementation of TO in AL

Right-justified
schedule

si < sj ⇒ p < q sort activities in increasing order of their
start times

Left-justified
schedule

fi > fj ⇒ p < q sort activities in decreasing order of their
finish times

15

FIGURE 1

Example project

0

0

2

2

0

1 2

3 4

7

65

8 9

10

2

1

4

2
2

1
1

1

3

1

3

1

2

1

4

1

0

0

i

di

ri1

16

FIGURE 1.

A left-justified schedule and the corresponding AL after incorporation of the TO-

condition

17

FIGURE 2

The iterative forward/backward scheduling technique

18

FIGURE 3

Crossover operator

19

TABLE 2

Comparative results for J30

Algorithm 1,000 5,000 50,000
Kochetov and Stolyar [11] 0.10 0.04 0.00
Debels et al. [5] 0.27 0.11 0.01
Our procedure 0.17 0.06 0.02
Valls et al. [26] 0.27 0.06 0.02
Alcaraz and Maroto [1] 0.33 0.12 -
Valls et al.[29] 0.34 0.20 0.02
Tormos and Lova [25] 0.25 0.13 0.05
Nonobe and Ibaraki [21] 0.46 0.16 0.05
Tormos and Lova [23] 0.30 0.16 0.07
Hartmann [7] 0.38 0.22 0.08
Hartmann [6] 0.54 0.25 0.08
Tormos and Lova [24] 0.30 0.17 0.09
Valls et al. [29] 0.46 0.28 0.11
Bouleimen and Lecocq [3] 0.38 0.23 -
Coelho and Tavares [4] 0.74 0.33 0.16
Schirmer [22] 0.65 0.44 -
Baar et al. [2] 0.86 0.44 -
Kolisch and Drexl [12] 0.74 0.52 -
Hartmann [6] 1.03 0.56 0.23
Kolisch [17] 0.83 0.53 0.27
Coelho and Tavares [4] 0.81 0.54 0.28
Kolisch [16] 1.44 1.00 0.51
Kolisch [17] 1.05 0.78 0.56
Hartmann [6] 1.38 1.12 0.88
Kolisch [17, 18] 1.40 1.28 -
Kolisch [17] 1.40 1.29 1.13
Kolisch [16] 1.77 1.48 1.22
Leon and Ramamoorthy [30] 2.08 1.59 -

max. #schedules

20

TABLE 3

Comparative results for J60

Algorithm 1,000 5,000 50,000
Our procedure 11.45 11.00 10.69
Debels et al. [5] 11.73 11.10 10.71
Valls et al. [26] 11.56 11.10 10.73
Kochetov and Stolyar [11] 11.71 11.17 10.74
Valls et al. [29] 12.21 11.27 10.74
Hartmann [7] 12.21 11.70 11.21
Hartmann [6] 12.68 11.89 11.23
Tormos and Lova [25] 11.88 11.62 11.36
Tormos and Lova [24] 12.14 11.82 11.47
Alcaraz and Maroto [1] 12.57 11.86 -
Tormos and Lova [23] 12.18 11.87 11.54
Bouleimen and Lecocq [3] 12.75 11.90 -
Nonobe and Ibaraki [21] 12.97 12.18 11.58
Valls et al. [29] 12.73 12.35 11.94
Schirmer [22] 12.94 12.58 -
Coelho and Tavares [4] 13.28 12.63 11.94
Hartmann [6] 14.68 13.32 12.25
Hartmann [6] 13.30 12.74 12.26
Kolisch and Drexl [12] 13.51 13.06 -
Kolisch [17, 18] 13.66 13.21 -
Coelho and Tavares [4] 13.80 13.31 12.83
Kolisch [17] 13.75 13.34 12.84
Kolisch [17] 13.59 13.23 12.85
Baar et al. [2] 13.80 13.48 -
Leon and Ramamoorthy [30] 14.33 13.49 -
Kolisch [17] 13.96 13.53 12.97
Kolisch [16] 14.89 14.30 13.66
Kolisch [16] 15.94 15.17 14.22

max. #schedules

21

TABLE 4

Comparative results for J120

Algorithm 1,000 5,000 50,000
Our procedure 34.29 32.34 30.75
Valls et al. [26] 34.07 32.54 31.24
Debels et al. [5] 35.22 33.10 31.57
Valls et al. [29] 35.39 33.24 31.58
Kochetov and Stolyar [11] 34.74 33.36 32.06
Valls et al. (29) 35.18 34.02 32.81
Hartmann [7] 37.19 35.39 33.21
Tormos and Lova [25] 35.01 34.41 33.71
Merkle et al. [20] - 35.43 -
Hartmann [6] 39.37 36.74 34.03
Tormos and Lova [24] 36.24 35.56 34.77
Tormos and Lova [23] 36.49 35.81 35.01
Alcaraz and Maroto [1] 39.36 36.57 -
Nonobe and Ibaraki [21] 40.86 37.88 35.85
Coelho and Tavares [4] 39.97 38.41 36.44
Valls et al. [29] 38.21 37.47 36.46
Bouleimen and Lecocq [3] 42.81 37.68 -
Hartmann [6] 39.93 38.49 36.51
Schirmer [22] 39.85 38.70 -
Kolisch [17] 39.60 38.75 37.74
Kolisch (17, 18) 39.65 38.77 -
Hartmann [6] 45.82 42.25 38.83
Kolisch [17] 41.27 40.38 39.34
Kolisch and Drexl [12] 41.37 40.45 -
Coelho and Tavares [4] 41.36 40.46 39.41
Leon and Ramamoorthy [30] 42.91 40.69 -
Kolisch [17] 42.84 41.84 40.63
Kolisch [16] 44.46 43.05 41.44
Kolisch [16] 49.25 47.61 45.60

max. #schedules

22

TABLE 5

Optimal values of the population size

Dataset 1,000 5,000 50,000
J30 55 112 416
J60 30 71 390
J120 20 60 290

max. #schedules

