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ABSTRACT 

The resource-constrained project scheduling problem (RCPSP) is one of the most challenging 

problems in project scheduling. During the last couple of years many heuristic procedures 

have been developed for this problem, but still these procedures often fail in finding near-

optimal solutions for more challenging problem instances. In this paper, we present a new 

genetic algorithm (GA) that, in contrast of a conventional GA, makes use of two separate 

populations. This bi-population genetic algorithm (BPGA) operates on both a population of 

left-justified schedules and a population of right-justified schedules in order to fully exploit 

the features of the iterative forward/backward local search scheduling technique. Comparative 

computational results reveal that this procedure can be considered as today’s best performing 

RCPSP heuristic. 
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1 INTRODUCTION 

We study the resource-constrained project scheduling problem (RCPSP), denoted as 

m,1|cpm|Cmax using the classification scheme of [9]. The RCPSP can be stated as follows. In a 

project network in AoN format G(N,A), we have a set of nodes N and a set of pairs A, 

representing the direct precedence relations. The set N contains n activities, numbered from 0 

to n - 1 (|N| = n). Furthermore, we have a set of resources R, and for each resource type k ∈ R, 

there is a constant availability ak throughout the project horizon. Each activity i ∈ N has a 

deterministic duration di ∈ IN and requires rik ∈ IN units of resource type k. We assume that 

rik ≤ ak for i ∈ N and k ∈ R. The dummy start and end activities 0 and n - 1 have zero duration 

and zero resource usage. A schedule S is defined by an n-vector of start times s(S) = (s0, ..., 

sn), which implies an n-vector of finish times f(S) where fi = si + di, ∀ �i ∈ N. A schedule S is 

said to be feasible if it is nonpreemptive and if the precedence and resource constraints are 

satisfied. If none of the activities can be scheduled forwards (backwards) due to precedence or 

resource constraints, then the schedule is said to be left-justified (right-justified). The 

objective of the RCPSP is to find a feasible schedule that minimizes the project makespan fn. 

 
 

2 REPRESENTATION AND GENERATION OF LEFT- AND RIGHT-JUSTIFIED 

SCHEDULES 

Each RCPSP meta-heuristic relies on a schedule representation to encode a schedule 

and a schedule generation scheme (SGS) to decode the schedule representation into a 

schedule S. For both the representation and generation of a schedule various approaches exist.  

Although five different methods are given in the literature [13], a schedule 

representation is simply a representation of a priority-structure between the activities. For our 

procedure we use the most frequently used [13] activity list (AL) representation where a 

sequence of activities λλλλ = [λ1, …, λn] is used to determine the priority of each activity. When 

λp = i, we say that activity i is at position p in the AL. An activity i has a lower priority than 

all preceding activities in the sequence and a higher priority than all succeeding activities. An 

AL is said to be precedence-feasible if an activity never comes after the position of one of its 

successors (predecessors) in the list used for the generation of a left-justified (right-justified) 

schedule. In the current paper, we rely on the topological ordering (TO) condition [5, 27] in 

our AL representation. Our version of the TO condition and its implementation in our AL is 

described in table 1, with p and q the positions of activity i and j in an AL. The table 
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illustrates that the TO condition and the implementation depends on the justification of the 

schedule (left or right). Since the TO condition is based on start and finish times, and hence 

uses information from the corresponding schedule, we can only incorporate the TO condition 

after the schedule generation. In section 3.3, the advantages of the TO condition will be 

illustrated on a project example  

 

Insert Table 1 & Figure 1 About Here 

Besides different schedule representations, there exist also two different types of SGSs 

in the literature; the serial SGS and the parallel SGS. As it is sometimes impossible to reach 

an optimal solution with the parallel SGS [17] we opt for the serial SGS where all activities 

are scheduled one-in-a-time and in the sequence of the AL. Each activity is scheduled as soon 

(as late) as possible within the precedence and resource constraints to construct a left-justified 

(right-justified) schedule. We introduce the example project depicted in Fig. 1, with a single 

renewable resource type with availability a1 = 2. The problem is represented by an activity-on-

the-node network. Corresponding to each activity we depicted the duration on top of the node 

and the resource demand below the node. Fig. 2 represents a left-justified schedule 1, obtained 

by applying a serial SGS on the activity list [1, 2, 8, 5, 3, 4, 6, 7, 9]. The incorporation of the 

TO-condition on this schedule, leads to the activity list AL1, depicted at the bottom of Fig.2 

 

Insert Figure 2 About Here 

A well-known local search technique for RCPSP meta-heuristics is the iterative 

forward/backward scheduling technique. This technique is introduced by Li and Willis [19] 

and successfully implemented in various meta-heuristic procedures [1, 5, 11, 23, 24, 25, 26, 

28]. The technique is based on the serial SGS and uses schedule-information to determine the 

AL. Starting from a left-justified schedule, the procedure creates an AL by sorting the 

activities in decreasing order of their finish times (i.e. the TO condition for left-justified 

schedules of table 1). Then, the serial SGS is used to build a right-justified schedule. In a 

following iteration, the activities are sorted in increasing order of the start times in the right-

justified schedule (i.e. the TO condition for right-justified schedules of table 1) and the serial 
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SGS is used to generate a left-justified schedule. In doing so, only improvements can occur 

for each iteration. The procedure stops when no further improvements can be obtained. 

Assume that schedule 1 of Fig. 2 is our start left-justified schedule with an activity list AL1. 

The iterative forward/backward procedure uses this list to construct a right-justified schedule 

with corresponding activity list AL2. In this list, each activity has been sorted in increasing 

order of their start times. This iteration (see schedule 2 of Fig. 3) leads to a makespan 

improvement of 2 time units. In a next iteration, the procedure construct the left-justified 

schedule 3 with a corresponding activity list AL3. The procedure could continue this process 

by using the activity list AL3 to construct a right-justified schedule, but it is easy to see that no 

further makespan improvement can be achieved. 

Insert Figure 3 About Here 

3 THE BI-POPULATION GENETIC ALGORITHM 

The evolution of living beings motivated Holland [10] to solve complex optimization 

problems by using algorithms that simulate biological evolution. This approach gave rise to 

the technique known as Genetic Algorithm (GA). In a GA, processes loosely based on natural 

selection, crossover and mutation are repeatedly applied to one population that represents 

potential solutions. In contrast to a regular GA, we use the bi-population genetic algorithm 

(BPGA) that makes use of two different populations: a population LJS that only contains left-

justified schedules and a population RJS that only contains right-justified schedules. Both 

populations have the same population size. The procedure starts with the generation of an 

initial LJS, followed by an iterative process that continues until the stop criterion is satisfied. 

The iterative process consecutively adapts the population elements of RJS and LJS. RJS 

(LJS) is updated by feeding it with combinations of population elements taken from LJS 

(RJS) that are scheduled backwards (forwards) with the serial SGS. This is exactly the reason 

why we have chosen to represent a left-justified (right-justified) schedule with its 

corresponding finish (start) times, as shown in table 1. The remainder of this section reveals 

some further algorithmic details about the construction of the initial population, parent-

selection, crossover-operator, diversification and selection mechanism of the BPGA. 
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3.1 Construction of the initial population 

We start the genetic algorithm by building an initial population LJS of left-justified 

schedules. Each population element is created by randomly generating an AL, constructing 

the corresponding left-justified schedule and finally incorporating the TO condition of table 1. 

 

3.2 Parent Selection 

For each population element a of LJS (RJS) we create a set of nrc right-justified (left-

justified) children that are candidates to enter RJS (LJS). To create a child out of a, we select 

another parent b from LJS (RJS) by using the 2-tournament selection procedure. In this 

selection procedure two population-elements are chosen randomly, and the element with the 

best objective-function value is selected. Afterwards, we determine randomly whether a or b 

represents the father Sf. The other parent represents the mother Sm. 

 

3.3 Generation of a child 

A right-justified (left-justified) child is created from two parents from LJS (RJS) in 

two phases. In both phases, the advantages of our TO-condition implementation are fully 

exploited. 

Phase 1: the construction of a combined activity list ALScomb  

Based on two parents from LJS (RJS), we use a 2-point crossover operator to generate 

the combined activity list ALScomb which is used in phase 2 to construct a right-justified (left-

justified) child Sc. To that purpose we select two crossover points cp1 and cp2 as follows. 

First, we randomly generate a crossover interval ∆cp from [¼.fn(Sm), ¾.fn(Sm)], where fn(Sm) 

denote the makespan of the mother schedule. Then, we randomly generate cp1 from [0, fn(Sm) 

- ∆cp] and set cp2 = cp1 + ∆cp. The TO condition allows the construction of ALScomb, and the 

combined schedule Scomb, by simply copying parts from the AL of the mother and the father. 

More precisely, we copy all activity positions from the mother from the intervals [1, cp1[ and 

]cp2, n] (see part 1 and part 3 in Fig. 4). The remaining activities from the interval [cp1, cp2] 

are copied in ALScomb according to their AL ranking of the father (part 2 of Fig. 4). 

In Fig. 4, we have set cp1 and cp2 to 4 and 7, and ALSf and ALSm represent the activity 

lists of the parents in TO-format. The dark-colored activities from the interval [1, 4[ (i.e. 6, 7 

and 9) and ]7, 9] (i.e. 1 and 3) are copied from ALSm into ALScomb. The remaining  activities (i.e. 
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2, 5, 8 and 4), displayed in white, are copied into ALScomb according to the sequence of ALSf, 

i.e. 8, 4, 2 and 5. 

Phase 2: the construction of a right-justified (left-justified) child. 

The combined schedule Scomb often is neither a left- of right-justified schedule. 

Therefore, we transform this combined schedule into a left-justified (right-justified) schedule, 

when the parents belong to RJS (LJS), using the SGS. This can be done by running the 

iterative forward/backward scheduling procedure on the combined schedule Scomb. In doing 

so, only improvements can occur for each part of Scomb. In our example of Fig. 4, we 

transform Scomb in a right-justified schedule Sc, resulting in a makespan improvement of 3 

time-units for part 1 and 1 time-unit for part 2.  

 

3.4 Diversification 

Diversification is necessary in every genetic algorithm to avoid the creation of a 

homogeneous population. We use a reactive method that only applies diversification to a child 

when it comes from two not mutually diverse parents. To define whether the parents are 

sufficiently diverse, we need a threshold τ and a distance measure. Our distance measure 

simply takes the sum of absolute deviations between the positions in the activity list of the 

father and the activity list of the mother for each activity and divides the obtained value by the 

number of non-dummy activities as defined in (1). Diversification is desirable if the distance 

exceeds the threshold τ and is exerted on ALcomb by randomly swapping the positions of two 

activities for nrd times. 

 

∑
=

=
n

i

ii
n 1

SS mf
AL in  of position-AL in  of position

1
ALALdistance ),(

mf SS  
(1) 

 
In our example we calculate a distance of 1.55 between ALSf and ALSm as the sum of 

position differences for all activities is 17 and the number of non-dummy activities is 9. 

 

3.5 Selection mechanism 

The selection mechanism determines the way in which the new generation replaces the 

old generation. In order to make the genetic algorithm successful, the ‘survival of the fittest’-

principle should be embedded. Good children should have a higher chance to enter in the new 

generation than inferior ones in order to improve the quality of the population.  
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The population RJS (LJS) is fed by children generated from LJS (RJS). In the 

following we will explain how we update RJS. The way in which we update LJS is analogue. 

As mentioned previously, we generate nrc children for each element of LJS. From the set that 

is created by the xth population-element, we select the child with the lowest makespan. This 

child will replace the xth element of RJS, even if this leads to a deterioration of the makespan. 

But, in order to prevent that we loose high-quality schedules, we do not automatically replace 

the xth element if this corresponds with the best-found schedule so far. In this case, we only 

perform replacement when the child represents a new best-found solution. 

 

4 COMPARATIVE COMPUTATIONAL RESULTS 

Insert Table 2 About Here 

We have coded the procedure in Visual C++ 6.0 and performed computational tests on 

an Acer Travelmate 634LC with a Pentium IV 1.8 GHz processor using the well-known 

PSPLIB dataset [15] which we use to compare our procedure with other existing procedures 

from the literature. This dataset contains the subdatasets J30, J60 and J120 that contain 

problem-instances of 30, 60 and 120 activities respectively. We predefined the settings of the 

parameters as follows. The number of children nrc is fixed at 2, the diversification-parameter 

nrd is fixed at the number of activities divided by 10 and the threshold τ for applying 

diversification is set equal to 2. The population size has been fine-tuned to an ideal value. 

Insert Table 3 About Here 

To be able to compare procedures for the RCPSP, Hartmann and Kolisch [8] presented 

a methodology in which all procedures can be tested on the PSPLIB-datasets by using 1,000 

and 5,000 generated schedules as a stop condition. In [14] Hartmann and Kolisch give an 

update of these results, and also report on 50,000 schedules as a schedule limit. In table 2, 3 

and 4 we compare our algorithm with these results for the datasets J30, J60 and J120 

respectively. The average deviation from the optimal solution is used as a measure of quality 

for J30 and the average deviation from the critical path based lower bound for J60 and J120. 

In each table the heuristics are ranked by the corresponding deviation for 50,000 schedules. 
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The results for 5,000 and 1,000 schedules are used as a tie-breaker, if necessary. The tables 

reveal that our procedure is capable to report consistently good results. For the datasets J60 

and J120 it outperforms all other procedures. Only for J30, the procedures of Kochetov and 

Stolyar [11] and Debels et al. [5] report a slightly better result. Furthermore, our procedure 

often generates better solutions for the PSPLIB problem instances than the best solutions 

found so far (based on PSPLIB results on December 3, 2004, see http://www.bwl.uni-

kiel.de/bwlinstitute/Prod/psplib/datasm.html). As an example, we obtained 15 improvements 

for J120 and with a stop condition of 50,000 schedules. In general we conclude that the more 

challenging the problem-instances are, the better our procedure performs with respect to other 

procedures.  

Insert Table 4 About Here 

The optimal values of the population size used for the results of table 2, 3 and 4 are 

depicted in table 5. This table reveals that population size is positively related to the schedule 

limit and negatively related to the number of activities. The use of a large population avoids, 

similar to diversification, a homogeneous population, and this becomes more important for 

small problem instances and high values for the stop criterion. 

Insert Table 5 About Here 

5 CONCLUSION 

In this paper we presented a genetic algorithm for the resource-constrained project 

scheduling problem (RCPSP) that operates on two separate populations. The first population 

only contains left-justified schedules and the second population only contains right-justified 

schedules. Our bi-population genetic algorithm (BPGA) combines schedules of the first 

population to create children that are candidate to enter the second population and vice versa. 

In this way the procedure is able to exploit the advantages of a local search technique denoted 

as the iterative forward/backward scheduling technique. The comparative computational 

results on the well-known PSPLIB dataset illustrated that the BPGA is currently the best 

meta-heuristic procedure for the RCPSP. 
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TABLE 1 

Incorporation of TO condition 

Justification of 
schedule 

TO condition implementation of TO in AL 

Right-justified 
schedule 

si < sj ⇒ p < q sort activities in increasing order of their 
start times 

Left-justified 
schedule 

fi > fj ⇒ p < q sort activities in decreasing order of their 
finish times 
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FIGURE 1 

Example project 
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FIGURE 1. 

A left-justified schedule and the corresponding AL after incorporation of the TO-

condition 
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FIGURE 2 

The iterative forward/backward scheduling technique 
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FIGURE 3 

Crossover operator 
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TABLE 2 

Comparative results for J30 

Algorithm 1,000 5,000 50,000
Kochetov and Stolyar [11] 0.10 0.04 0.00
Debels et al. [5] 0.27 0.11 0.01
Our procedure 0.17 0.06 0.02
Valls et al. [26] 0.27 0.06 0.02
Alcaraz and Maroto [1] 0.33 0.12 -
Valls et al.[29] 0.34 0.20 0.02
Tormos and Lova [25] 0.25 0.13 0.05
Nonobe and Ibaraki [21] 0.46 0.16 0.05
Tormos and Lova [23] 0.30 0.16 0.07
Hartmann [7] 0.38 0.22 0.08
Hartmann [6] 0.54 0.25 0.08
Tormos and Lova [24] 0.30 0.17 0.09
Valls et al. [29] 0.46 0.28 0.11
Bouleimen and Lecocq [3] 0.38 0.23 -
Coelho and Tavares [4] 0.74 0.33 0.16
Schirmer [22] 0.65 0.44 -
Baar et al. [2] 0.86 0.44 -
Kolisch and Drexl [12] 0.74 0.52 -
Hartmann [6] 1.03 0.56 0.23
Kolisch [17] 0.83 0.53 0.27
Coelho and Tavares [4] 0.81 0.54 0.28
Kolisch [16] 1.44 1.00 0.51
Kolisch [17] 1.05 0.78 0.56
Hartmann [6] 1.38 1.12 0.88
Kolisch [17, 18] 1.40 1.28 -
Kolisch [17] 1.40 1.29 1.13
Kolisch [16] 1.77 1.48 1.22
Leon and Ramamoorthy [30] 2.08 1.59 -

max. #schedules
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TABLE 3 

Comparative results for J60 

Algorithm 1,000 5,000 50,000
Our procedure 11.45 11.00 10.69
Debels et al. [5] 11.73 11.10 10.71
Valls et al. [26] 11.56 11.10 10.73
Kochetov and Stolyar [11] 11.71 11.17 10.74
Valls et al. [29] 12.21 11.27 10.74
Hartmann [7] 12.21 11.70 11.21
Hartmann [6] 12.68 11.89 11.23
Tormos and Lova [25] 11.88 11.62 11.36
Tormos and Lova [24] 12.14 11.82 11.47
Alcaraz and Maroto [1] 12.57 11.86 -
Tormos and Lova [23] 12.18 11.87 11.54
Bouleimen and Lecocq [3] 12.75 11.90 -
Nonobe and Ibaraki [21] 12.97 12.18 11.58
Valls et al. [29] 12.73 12.35 11.94
Schirmer [22] 12.94 12.58 -
Coelho and Tavares [4] 13.28 12.63 11.94
Hartmann [6] 14.68 13.32 12.25
Hartmann [6] 13.30 12.74 12.26
Kolisch and Drexl [12] 13.51 13.06 -
Kolisch [17, 18] 13.66 13.21 -
Coelho and Tavares [4] 13.80 13.31 12.83
Kolisch [17] 13.75 13.34 12.84
Kolisch [17] 13.59 13.23 12.85
Baar et al. [2] 13.80 13.48 -
Leon and Ramamoorthy [30] 14.33 13.49 -
Kolisch [17] 13.96 13.53 12.97
Kolisch [16] 14.89 14.30 13.66
Kolisch [16] 15.94 15.17 14.22

max. #schedules
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TABLE 4 

Comparative results for J120 

Algorithm 1,000 5,000 50,000
Our procedure 34.29 32.34 30.75
Valls et al. [26] 34.07 32.54 31.24
Debels et al. [5] 35.22 33.10 31.57
Valls et al. [29] 35.39 33.24 31.58
Kochetov and Stolyar [11] 34.74 33.36 32.06
Valls et al. (29) 35.18 34.02 32.81
Hartmann  [7] 37.19 35.39 33.21
Tormos and Lova [25] 35.01 34.41 33.71
Merkle et al. [20] - 35.43 -
Hartmann [6] 39.37 36.74 34.03
Tormos and Lova [24] 36.24 35.56 34.77
Tormos and Lova [23] 36.49 35.81 35.01
Alcaraz and Maroto [1] 39.36 36.57 -
Nonobe and Ibaraki [21] 40.86 37.88 35.85
Coelho and Tavares [4] 39.97 38.41 36.44
Valls et al. [29] 38.21 37.47 36.46
Bouleimen and Lecocq [3] 42.81 37.68 -
Hartmann [6] 39.93 38.49 36.51
Schirmer [22] 39.85 38.70 -
Kolisch [17] 39.60 38.75 37.74
Kolisch (17, 18) 39.65 38.77 -
Hartmann [6] 45.82 42.25 38.83
Kolisch [17] 41.27 40.38 39.34
Kolisch and Drexl [12] 41.37 40.45 -
Coelho and Tavares [4] 41.36 40.46 39.41
Leon and Ramamoorthy [30] 42.91 40.69 -
Kolisch [17] 42.84 41.84 40.63
Kolisch [16] 44.46 43.05 41.44
Kolisch [16] 49.25 47.61 45.60

max. #schedules
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TABLE 5 

Optimal values of  the population size 

Dataset 1,000 5,000 50,000
J30 55 112 416
J60 30 71 390
J120 20 60 290

max. #schedules

 
 


