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ABSTRACT 

Repetitive projects involve the repetition of activities along the stages of the project. Since the 

resources required to perform these activities move from one stage to the other, a main 

objective of scheduling these projects is to maintain the continuity of work of these resources 

so as to minimize the idle time of resources. This requirement, often referred to as work 

continuity constraints, involves a trade-off between total project duration and the resource idle 

time. 

The contribution of this paper is threefold. Firstly, we provide an extensive literature summary 

of the topic under study. Although most research papers deal with the scheduling of 

construction projects, we show that this can be extended to many other environments. 

Secondly, we propose an exact search procedure for scheduling repetitive projects with work 

continuity constraints. This algorithm iteratively shifts repeating activities further in time in 

order to decrease the resource idle time. We have embedded this recursive search procedure in 

a horizon-varying algorithm in order to detect the complete trade-off profile between resource 

idle time and project duration. The procedure has been coded in Visual C++ and has been 

validated on a randomly generated problem set. Finally, we illustrate the concepts on three 

examples. First, the use our new algorithm is illustrated on a small fictive problem example 

from literature. In a second example, we show that work continuity constraints involve a 

tradeoff between total project duration and the resource idle time. A last example describes 

the scheduling of a well-known real-life project that aims at the construction of a tunnel at the 

Westerschelde in the Netherlands. 

 

Keywords: Project Management; CPM; work continuity; repetitive project scheduling. 
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1 INTRODUCTION 

Construction projects are often characterised by repeating activities that have to be 

performed from unit to unit. Highway projects, pipeline constructions and high-rise buildings, 

for example, commonly require resources to perform the work on similar activities that shift 

in stages. Indeed, construction crews perform the work in a sequence and move from one unit 

of the project to the next. This is mainly the result of the subdivision of a general activity (e.g. 

carpentry) into specific activities associated with particular units (e.g. carpentry at each floor 

of a high-rise building). 

The repetitive processes of these construction projects can be classified according to 

the direction of successive work along the units. In horizontal repetitive projects the different 

processes are performed horizontally, as seen in pipeline construction or paving works. These 

construction projects are often referred to as continuous repetitive projects or linear projects 

due to the linear nature of the geometrical layout and work accomplishment. When progress is 

performed vertically, we refer to vertical repetitive projects, among which high-rise building 

construction is the classical example. Rather than a number of activities following each other 

linearly, these construction projects involve the repetition of a unit network throughout the 

project in discrete steps. It is therefore often referred to as discrete repetitive projects. Kang, 

Park and Lee (2001) argue that construction projects can consist of both horizontal and 

vertical repetitive processes among several multi-storey structures and refer to this type as 

multiple repetitive projects. 

El-Rayes and Moselhi (1998) distinguish between typical and atypical repetitive 

activities. Typical repetitive activities are characterized by identical durations over all units, 

while atypical repetitive activities assume variation of duration from one unit to another. This 

variation can be attributed to variations in the quantities of work encountered or crew 

productivity attained in performing the work of these units (Moselhi and El-Rayes, 1993). 

A crucial point in scheduling these projects is to ensure the uninterrupted usage of 

resources of similar activities between different units. Idleness that does not find its roots in 

forced causes, such as bad weather or equipment breakdowns, is classified as unforced 

idleness or waste. This waste in repetitive projects stems from resources (crew, equipment,…) 

waiting for preceding resources to finish their work and has to be eliminated to maintain 

continuity of work (Harris and Ioannou, 1998). Consequently, in order to maintain work 

continuity, repetitive units must be scheduled in such a way as to enable timely movement of 
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resources from one unit to the next, avoiding resource idle time. This is knows as the work 

continuity constraints (El-Rayes and Moselhi, 1998). 

In this paper, we focus on the vertical (or discrete) repetitive project scheduling 

problem with work continuity constraints. The organization of the paper is as follows. In 

section 2 we present an overview of the scheduling literature of projects with repeating 

activities. Section 3 describes the features of the project scheduling problem under study. In 

section 4 we present our algorithm for scheduling a repetitive project with work continuity 

constraints. In section 5 we illustrate our new algorithm on three project examples. Section 6 

reports detailed computational results on two randomly generated problem sets. In section 7 

we give our overall conclusions and suggestions for future research. 

 

2 LITERATURE OVERVIEW 

The effective planning, scheduling and control of repetitive construction projects are 

of crucial importance and lead to a reduced construction time, reduced cost overruns and 

minimization of disputes (Callahan et al., 1992). Different scheduling methods have been 

proposed in literature in order to obtain these benefits. A common remark, however, is that 

most techniques dealing with this scheduling problem are overshadowed by the critical path 

method (CPM) which lacks a number of features needed in the repetitive scheduling industry. 

Therefore, a need exists to expand the features of the CPM to include some extra repetitive 

scheduling features. El-Rayes (2001) states that scheduling of repetitive construction projects 

can be significantly improved by three main practical requirements, i.e. (i) crew work 

continuity, (ii ) optimize scheduling and resource utilization so as to minimize project duration 

and (iii ) the integration of repetitive and nonrepetitive scheduling techniques. These details of 

these three requirement are explained below. 

 

(i) The application of crew work continuity constraints provides room for an 

effective resource utilization strategy by minimizing crew idle time. Consequently, this leads 

to the maximization of the benefits from the learning curve effect for each crew (Shtub et al., 

1996) and the minimization of the off-on movement of crews on a project once work has 

begun (Ashley, 1980, Birrell, 1980). However, Russell and Wong (1993) take a critical look 

and state that this requirement should not be strictly enforced in scheduling repetitive 

activities. Selinger (1980) recognizes a trade-off in scheduling repetitive units: work 

interruption indeed results in an increased direct cost because of the idle crew time and 
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therefore needs to be avoided. But violation of these work continuity constraints by allowing 

work interruption may possibly lead to an overall project duration reduction and the 

corresponding indirect costs, and consequently, a careful trade-off should be made between 

these two extremes.  

 

(ii)  We note that minimizing the project duration is a more complex process for 

repetitive projects than for nonrepetitive ones. Indeed, the simple logic of crashing critical 

activities in order to shorten the total project duration does no longer hold with the presence of 

work continuity constraints. Therefore, Rowings and Harmeling (1993, 1994) proposed the 

linear scheduling method (LSM) to determine the critical path in a linear schedule. Similar to 

the forward and backward calculations of CPM, the algorithm identifies to so-called 

controlling activity path (CAP). Activities or segments of activities not on the CAP must have 

float (Harmelink, 2001).  

 

(iii)  Most construction projects contain both repetitive and nonrepetitive activities. 

Since the nonrepetitive activities can be scheduled using traditional network techniques 

while the repetitive activities require more specialized tools with work continuity 

features, the two scheduling techniques need to be combined in an efficient scheduling 

model (O’Brein et al, 1985; Russell and Wong, 1993).  

 

In this paper we focus on the work continuity constraints of repetitive project 

scheduling by taking both the resource idle time and the total project duration into account. In 

doing so, we take into account the practical requirements mentioned above and recognize the 

trade-off between idle time minimization and project duration.  

As mentioned previously, traditional network techniques such as the critical path 

method have been criticized in literature for their major drawbacks when applied to 

scheduling of repetitive projects. According to Reda (1990), the use of the CPM for 

scheduling repetitive projects has three major disadvantages. First, CPM needs to rely on a 

large number of activities needed to represent repetitive projects. Indeed, each unit in a 

repetitive network contains the same activities which can be represented by a project network. 

Due to the repeating character of the activities between the units of the project, the complete 

CPM network will have a ladder-like appearance. Each stair denotes the work at one unit 

consisting of the several activities and precedence relations for that unit. Since the CPM 
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network shows all the links between similar activities of successive units, the number of nodes 

and arcs of the complete network will be very large. A second drawback is the inability of 

CPM to guarantee continuity of work. Although it has been reported by several authors that 

the uninterrupted utilization of resources is an extremely important issue, neither CPM nor its 

resource-oriented extensions take these work continuity constraints into account. Finally, 

CPM incorporates the notion of activity crashing by assigning extra resources to the activities, 

resulting in the well-known time/cost trade-off activity profile. When applying this principle 

to repetitive projects, activity crashing at one unit leads to a modification of production rates 

between similar activities at different units. Mattila and Abraham (1998) come to similar 

conclusions and focus on linear construction as a segment of construction scheduling in which 

CPM is inadequate. This includes the inability of CPM to (i) model work continuity 

constraints, (ii ) to handle the large number of activities needed to represent repetitive projects 

and (iii ) to accurately reflect actual conditions.  

Recognition of the drawbacks of traditional CPM network models in scheduling 

repetitive projects has led to the development of several scheduling methodologies under 

different names. Harris and Ioannou (1998) give an overview and distinguish between 

methodologies for vertical projects with discrete units and horizontal projects where progress 

is measured linearly. For projects with discrete units, they mention line of balance (Carr and 

Meyer, 1974; Harris and Evans, 1977), construction planning technique (Peer, 1974; Selinger, 

1980), vertical production method (O’Brein, 1975), time-location matrix model (Birrell, 

1980), time space scheduling method (Stradal and Cacha, 1982), disturbance scheduling 

(Whiteman and Irwig, 1988), horizontal and vertical logic scheduling for multistorey projects 

(Thabet and Beliveau, 1994). For horizontal projects, developed techniques are time versus 

distance diagrams (Gorman, 1972), linear balance charts (Barrie and Paulson, 1978), velocity 

diagrams (Dressler, 1980), linear scheduling method (Johnston, 1981; Chrzanowski and 

Johnston, 1986; Russell and Casselton, 1988). In their paper, Harris and Ioannou (1998) 

integrate these methods into the repetitive scheduling method (RSM) which is a practical 

scheduling methodology that ensures continuous resource utilization applicable to both 

vertical and horizontal construction scheduling. In section 5.1 of this paper, we will refer to 

the project example of Harris and Ioannou (1998) in order to compare our algorithm with the 

repetitive scheduling method. 

Due to the overwhelming use of the CPM technique in repetitive project scheduling, a 

number of attempts have been made to compare this traditional technique with the more 

specialized tools. Schoderbek and Digman (1967) have introduced PERT/LOB as an attempt 
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to combine the merits presented by the Program Evaluation and Review Technique with the 

Line-Of-Balance principles. Al Sarraj (1990) presented a mathematical model for LOB in 

order to find the start and finish times for repetitive activities and the corresponding project 

duration. Suhail and Neale (1994) develop a new methology to integrate CPM and LOB. To 

that purpose, they incorporate the resource leveling principles and float times calculations of 

the CPM into the LOB technique. Yamin and Harmelink (2001) compare the linear 

scheduling method (LSM) and the critical path method (CPM) in detail and conclude that 

specialization can be beneficial to the project. However, although LSM can be superior to 

CPM for very specific projects, further research is needed to elevate the LSM to the CPM 

level. In this paper, we try to narrow the gap between the traditional scheduling methods and 

the repetitive project scheduling requirements by adding work continuity constraints into the 

CPM scheduling philosophy. Despite the fact that the number of activities of a CPM network 

for a repetitive project can increase dramatically, we will show in the computational results 

section that this does not harm the efficiency of our new algorithm in a severe way.  

 

3 WORK CONTINUITY CONSTRAINTS FOR CPM NETWORKS 

Throughout this paper, we assume that a project is represented by an activity-on-the-

node (AoN) network where the set of nodes, N, represents activities and the set of arcs, A, 

represents the precedence constraints. Since progress is performed in discrete steps (as in 

vertical repetitive projects), we assume that this network is repeated in K units. The duration 

of each activity i at unit k is denoted by dik (1 ≤ i ≤ n and 1 ≤ k ≤ K). In a similar way, we 

denote the starting and finishing time of activity i at unit k by sik and fik, respectively. 

Consequently, we extend the original unit network to a large network consisting of repeating 

activities between units. Moreover, we add a dummy start activity 0 at the first unit to denote 

the start of the project. This dummy activity is a predecessor for all activities of the first unit 

that have zero predecessors. In a similar way, we add a dummy end activity n + 1 at the last 

unit K to denote the finishing of the project. Consequently, this activity is a successor for all 

activities belonging to unit K with no successors. 

Resources are needed for each activity i that shifts along the units, from unit 1 to unit 

K. The problem under study involves the minimization of the idle time of resources between 

different units for a project with a given deadline.  
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In literature, work continuity constraints are often linked with the minimization of 

crew idle time. In the sequel of this paper, we use the more general term, resource idle time, 

since the minimization of idle time of resources may not be restricted to crews only. Two 

examples are given below:  

 

• De Boer (1998) introduced spatial resources as a resource type that is not 

required by a single activity but rather by a group of activities. Examples are dry 

docks in a ship yard, shop floor space or pallets. Since the spatial resource unit is 

occupied from the first moment an activity from the group starts until the last 

activity of the group finishes, work continuity constraints can be of crucial 

importance. 

• Gong (1997) has introduced the concept time dependent cost (TDC) as a part of 

the project costs that changes with the variation of activity times. The TDC is 

defined as the product of unit time cost and service time. Goto et al. (2000) 

elaborate on that concept and argue that the service time of a time dependent cost 

resource is the time duration starting form the first use and ending at the last. 

They refer to the use of a tower crane in the construction industry and argue that 

the reduction of waiting times of TDC resources naturally reduces the time 

dependent cost.  

 

These research papers motivated us to use the general term ‘resource idle time’ rather 

than the more specific ‘crew idle time’. The project scheduling problem with work continuity 

constraints can be formulated as follows: 
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where l ijkl denotes the time-lag for the precedence relation between activity i on unit 

level k and activity j on unit level l. These time-lags representing the different types of 

generalized precedence relations can be represented in a standardized form by reducing them 

to minimal start-start precedence relations as shown by the transformation rules of Bartusch et 

al. (1998). As an example, l ijkk has to be replaced by dik in Eqs. [2] to model the simple CPM 

case where only minimal precedence relations with zero time-lags are involved.  

The objective in Eq. 1 denotes the work continuity constraints and minimizes the 

resource idle time between similar activities at different units. We note that the word 

‘constraint’ is somewhat confusing since the work continuity of the schedule is guaranteed in 

the objective function of the model. Since the resource idle time is measured for resources that 

shift between units, it is sufficient to minimize the timespan of activities between the first and 

last unit. Indeed, these resource are needed at the start of the activity at the first unit and will 

only be released at the completion of this activity at the last unit K. Consequently, the starting 

times of all intermediate activities have no influence on the idle time of this resource and are 

therefore not included in the objective function. The constraint set given in Eq. 2 maintains 

the (generalized) precedence relations among the activities of the project network at each unit. 

The constraint set in Eq. 3 maintains the (generalized) precedence relations among similar 

activities between consecutive units. Eq. 4 forces the dummy start activity 0 to start at time 

zero and Eq. 5 forces the dummy end activity n + 1 (and consequently the project) to end on 

or before a negotiated deadline 1+nδ . Eq. 6 ensures that the activity starting times assume 

nonnegative integer values. Eq. 7 ensures that the single dummy start and single dummy end 

activity takes a nonnegative integer value. 
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Note that the formulation of Eqs.[1]-[7] is general and allows the use of both typical 

and atypical activities. Therefore, we use lijkk rather than a unit-independent lij, to express that 

the duration of each activity is not assumed to have a fixed value over all units. In doing so, 

we allow to incorporate crew productivity, differences in amounts of work between units or 

learning effects of crews. It has been noted by several authors that it may be necessary to 

incorporate the learning effects into activity time estimates in order to improve the accuracy 

of schedules, especially for programs consisting of repetitive projects (Amor (2002), Amor 

and Teplitz (1993, 1998), Badiru (1995), Shtub (1991) and Shtub et al. (1996)).  

As described in section 2, most research efforts in literature focus on the construction 

industry where the project consists of repeating activities along the units of a project. Even in 

the formulation of Eqs.[1]-[7] we use l ijkk and consequently, we again assume that the project 

consists of repetitive subparts. However, numerous examples outside the construction industry 

can be described where the minimization of the resource idle time is of crucial importance, 

without being confronted with repeating activities along the units. The following four 

examples illustrate the possible generalization of the work continuity constraints to other 

project environments: 

 

Outsourcing activities / hired material. Project scheduling problems where a set of 

activities has been outsourced, or that rely on external resources (subcontracting, 

consultants, etc…) need to be scheduled with work continuity constraints. This means 

that the set of activities can be divided into activity groups that have to be executed 

within the smallest possible time-span in order to minimize the total cost of 

outsourcing. 

 

Programme scheduling with different stakeholders. In programmes that consist of 

different projects for different stakeholders, each subproject can be seen as an 

individual ‘activity group’ where work continuity can be of importance. Consequently, 

it is beneficial to schedule the activities within an activity group within the smallest 

possible time-span (within the precedence and resource constraints of the complete 

programme) rather than simply resolving resource conflicts without taking the 

different subprojects into account. In doing so, we minimize the project duration 

towards each stakeholder and increase the satisfaction of the different stakeholders. As 

an example, Vanhoucke and Demeulemeester (2003) discussed a capacity expansion 

project at a Flemish water production company where different stakeholders are 
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involved. The project consists of different subprojects that are all crucial for the 

realization of the complete project. Some subprojects, however, can be considered as 

an individual project since they have immediate repercussions to some stakeholders. 

The schedule is constructed in a way that subprojects are scheduled within the smallest 

possible time-span in order to satisfy the individual stakeholders. This can be done by 

minimizing work continuity constraints within each subproject. 

 

Learning effects in projects. Learning effects between activity groups in projects 

result in reduced activity durations and costs, and consequently reduced overall project 

duration. In order to fully exploit these advantages of learning effects between activity 

groups, it is beneficial to minimize the total duration of each individual activity group 

(work continuity). Indeed, learning effects occur whenever completing an activity 

group before another one. By minimizing the work continuity per group, the different 

activity groups can be scheduled one after the other (rather than ‘mixing’ the activities 

between groups within the precedence and resource constraints of project), leading to a 

maximal effect of learning.  

 

Project with time-critical subprojects. In projects, where only a subpart is time-

critical, work continuity constraints can be important for scheduling the time-critical 

sub-network. As an example, we refer to a maintenance project in a luggage handling 

system at an airport. These projects typically have a small project duration (about 3 

weeks), and time is the main objective in the project scheduling phase. However, only 

a subpart of the project is time critical, i.e. the part which involves a shutdown of a 

part of the luggage handling line, which involves a penalty cost when exceeding the 

negotiated shut-downtime. Consequently, the activities which involve a shutdown of 

the luggage line can be seen as an activity group where work continuity is the main 

issue. 

 

The problem formulation represented by Eqs. [1]-[7] is to schedule all project 

activities with minimal resource idle time, without violating a given project deadline. 

However, Hegazy and Wassef (2001) and Selinger (1980) argue that minimizing work 

continuity as such is not the target since adding work interruption in the schedule can be 

beneficial. Hegazy and Wassef (2001) present a cost optimization model in order to minimize 
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total construction costs comprising direct cost, indirect cost, interruption cost as well as 

incentives and liquidated damages. They use a genetic algorithm approach to consider project 

deadline, crew synchronization and resource constraints simultaneously. They argue that 

adding work interruption can be beneficial to the total project duration by allowing earlier 

units of activities to start earlier than in the schedule with minimal resource idle time. Inspired 

by these observations, we developed an algorithm which search for the complete trade-off 

profile between project duration and resource idle time. To that purpose, we use a horizon-

varying approach which involves the iterative optimal solution for Eqs. [1]-[7] over the 

feasible project durations in the interval bounded from below (the minimal project duration) 

and from above (the maximal project duration). The minimal project duration corresponds to 

the critical path length while the maximal project duration corresponds to a schedule with 

minimal resource idle time. This means that a further increase in this project duration will not 

lead to an improvement of the resource idle time. In the next section, we discuss a recursive 

search algorithm to solve the problem given by Eqs.[1]-[7] (i.e. with a given fixed deadline). 

In section 4.4, we embed this procedure into our horizon-varying approach in order to find the 

complete trade-off profile between resource idle time and total project duration. 

 

4 THE ALGORITHM 

The proposed algorithm to minimize the resource idle time of problem [1]-[7] consists 

of three steps: an activity labeling step, the construction of a search tree and the recursive 

search in this tree. This algorithm is a modified version of the recursive search algorithm 

proposed by Vanhoucke et al. (2001) in order to solve a totally different problem (the so-

called max-npv problem).  

 

4.1 Step one. Activity labeling to simulate attraction 

The procedure starts with assigning a label to each activity at each unit in the 

following way: each activity of the project network receives a label with no value (0) except 

for non-dummy activities at the first and the last unit. These activities get a negative label (-1) 

at the first unit and a positive label (+1) at the last unit, as follows: 
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Label (0, 1) = Label (n + 1, K) = 0 
Do for i = 1, …, n 

Label (i, 1) = -1 
Label (i, K) = 1 
Label (i, k) = 0 for k = 2, …, K - 1 

 

The purpose of this simple labeling mechanism is to simulate attraction between 

activities in order to minimize resource idle time. Indeed, if we simulate attraction between 

similar activities i at the first (1) and last unit (K), we force the schedule to minimize the time 

distance siK – si1 between these activities. As mentioned before, the starting times of all 

intermediate activities (i.e. sik with k = 2, …, K – 1) are irrelevant for the work continuity 

calculations since they have no influence on the total resource idle time of this activity over 

all units. Similarly, Suhail and Neale (1994) illustrate in their LOB calculations that it is only 

necessary to show only the activities at the first and the last unit. 

 

4.2 Step two. Build a search tree 

It has been mentioned before that the complete CPM network has a ladder-like 

appearance, due to the repeating character of the activities between the units. For the sake of 

simplicity, we rename all activities in the sequel of this paper. In doing so, we can transform 

the repetitive network into a CPM network where precedence relations exist between 

activities at the same unit level or between successive levels. As an example, dummy activity 

0 at level 1 will be activity 0 in the new network, activity 1 at unit 1 will be activity 1, activity 

1 at level 2 will be activity n + 1 and so on. In a similar way, we modify the subscripts of the 

symbols sik and l ijkl to '
'is  and '

'' jil . Consequently, ' '' jil  can be used to denote a time-lag between 

activities at the same unit level (i.e. l ijkk) or between units (i.e. l iikk+1). 

Note that we have used n to denote the number of non-dummy activities at each unit 

(i.e. n = |N|), K to denote the number of repetitive units of the project and A to denote the set 

of precedence relations between the activities at each unit level. The new network containing 

all repetitive units has n’ activities and |A’| precedence relations, for which n’ = |N’| = K * n + 

2 and |A’| = K * |A| + n * (K – 1) + 2. 

In this step, we create an earliest start schedule by simply scheduling all the activities 

as soon as possible within the precedence constraints. On top of that, we construct a spanning 

tree that forms the basis of our recursive search of step 3. The latter has been investigated by 

Grinold (1972), who has shown that the search for an optimal schedule for the payment 

scheduling problem can be restricted to feasible trees in the project graph. 
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Using bool as a boolean variable used in the while test, ST to denote the spanning tree and CA 

to denote the set of considered activities, the pseudocode to build the spanning tree ST is as 

follows: 

 

BUILD SPANNING TREE 

 Initialize CA = {0}, ST = ∅ and bool = true 
 Set s’0 = 0 and s’i = -∞ | i = 1, …, n’ 
 While bool = true 
  bool = false 
  Do ∀(i, j) ∈ A’ 
   If s’i + l’ ij > s’j then bool = true and s’j = s’i + l’ ij 
 While CA ≠ N 
  Do ∀(i, j) ∈ A’ 
   If I ∈ CA and j ∉ CA and s’i + l’ ij = s’j then  
    CA = CA ∪ { j} 
    ST = ST ∪ (i,j) 
Return 
 
 

After this step, all activities are scheduled as soon as possible. Moreover, in the project 

network, only a subset of precedence relations ST is highlighted such that they form a tree. 

For more details, we refer the reader to Vanhoucke et al. (2000) in which four recursive 

search procedures for the so-called max-npv problem are compared to test their efficiency. 

 

4.3 Step three. Recursive search 

In a third step the spanning tree is the subject of a recursive search (using the dummy 

start activity 0 as the search base) in order to identify sets of activities (SA) that might be 

shifted forward (away from time zero) to improve the work continuity of the repetitive 

project. When a set of activities SA is found for which a forward shift leads to an 

improvement of the work continuity, the algorithm computes an allowable displacement 

interval and updates the spanning tree ST. The starting times of the activities of SA are 

increased by the allowable displacement interval and the algorithm repeats the recursive 

search. The allowable displacement interval vr*s*  simply calculates the minimal distance over 

which an activity r ∈ SA can be shifted until it connects with an activity s ∉ SA. If no further 

shift can be accomplished, the algorithm stops and the starting times of the activities of the 

project are reported. 

This recursive search is similar to the recursive procedure proposed by Vanhoucke et 

al. (2001) for the maximization of the net present value of an unconstrained project scheduling 



16 
 

problem. In this procedure, activities with a negative cash flow are scheduled as late as 

possible while activities with a positive cash flows are scheduled as soon as possible. By 

labeling our activities we simulate attraction between these activities since a negative label (-

1) is similar to a negative cash flows and consequently has to be scheduled as late as possible. 

A positive label (+1) is linked with a positive cash flows which is forced to be scheduled as 

soon as possible. 

The pseudocode of the third step, in which the recursion step is repeated several times, 

can be written as given below. The set CA denotes the set of already considered activities, ST 

denotes the spanning tree, CL denotes the cumulative label values and vr*s*  the allowable 

displacement interval.  

 

procedure Step 3: the recursive search method 
CA  = ∅  
Do RECURSION(1) → SA’, CL’ (parameters returned by the recursive function) 
Report the optimal starting times of the activities. STOP. 
 

RECURSION(NEWNODE) 
 Initialize SA = { newnode}, CL = Labelnewnode and CA = CA ∪ { newnode}  
 Do ∀nodei | nodei ∉ CA and nodei succeeds newnode in the current tree CT:  
 (remark that nodei can be on the same level k or on the following level than newnode) 
  RECURSION(nodei) → SA’, CL’ 
  If CL’ ≥ 0 then 
   Set SA = SA ∪ SA’ and CL = CL + CL’ 
  Else 
   CT = CT \ (newnode, nodei) 

   Compute }{min '''

'
'

'),(
** rsrs

SAs
SAr

Asr
sr lssv −−=

∉
∈

∈
and set ST = ST ∪ (r* ,s*) 

   Do ∀j∈SA’: set '
js  = '

js  + vr*s*  

   Go to Step 3: the recursive search method 
 Do ∀nodei | nodei ∉ CA and nodei precedes newnode in the current tree CT:  
 (remark that nodei can be on the same level k or on the previous level than newnode) 
  RECURSION(nodei) → SA’, CL’ 
  Set SA = SA ∪ SA’ and CL = CL + CL’ 
Return 
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Note that the renumbering of all the activities of the repetitive project was just for the 

sake of simplicity. As an example, the allowable shift interval }{min '''
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 in our previous notation used for 

Eqs. [1]-[7]. In the next section, we embed the recursive search procedure in the horizon-

varying approach in order to look for the complete optimal profile between work continuity 

and project duration. 

 

4.4 Horizon-varying approach for the complete time/work continuity profile 

The horizon-varying approach boils down to the initialization step (section 4.1) and an 

iterative call to the recursive search procedure of sections 4.2 and 4.3. The heart of the 

algorithm lies in the while loop of the pseudocode below. We start our search with a project 

deadline δn+1 equal to the critical path length (denoted by cpl). In doing so, the algorithm 

reports a schedule with minimal resource idle time (idle) and a corresponding project duration 

Cmax which is smaller than or equal to the critical path length (i.e. the solution of Eqs. [1]-[7] 

with δn+1 = cpl). The algorithm repeats its search with a project deadline δn+1 = δn+1 + 1 and, 

again, reports on results for the resource idle time (idle) and Cmax ≤ δn+1. The algorithm 

continues this way until it has found a schedule with a minimal value for the crew idle time 

(denoted by min). At this point, it stops the horizon-varying approach since a further increase 

in the project deadline will not lead to a decrease in resource idle time.  

 

HORIZON-VARYING APPROACH 

 Step 1: label activities 
 Determine min 
 Set δn+1 = cpl and idle = ∞ 
 While (idle > min) 

 Step 2: Build the spanning tree 
 Step 3: Recursive search with deadline δn+1 → (Cmax, idle) 
 Store Cmax and idle 
 δn+1 = δn+1 + 1 

Return 
 

Remark that the min-value depends on the type of generalized precedence relations of 

the repetitive project. On the one hand, for a project with only minimal precedence relations 

with time-lag of zero (cpm case) it is always possible to find a project deadline that results in a 
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schedule with an idle-value equal to zero. This means that, by allowing enough slack to the 

activities due to a project deadline increase, activities can be scheduled such that crews can 

work without idle time. Therefore, the horizon-varying approach starts from the critical path 

length and continues until it has found a schedule without idle time (i.e. min = 0). For projects 

with generalized precedence relations (i.e. both minimal and maximal precedence relation or 

gpr), on the other hand, there is no such guarantee. Due to the nature of the precedence 

relations, a schedule with zero resource idle time does often not exist. In order to determine 

what the min-value is, we initially solve the recursive search with a project deadline δn+1 = ∞ 

to report the minimal idle time value (min). Similar to the cpm case, we then solve the 

problem starting from the critical path length until we have found a schedule with that 

minimal value for the resource idle time. 

 

5 THREE ILLUSTRATIVE EXAMPLES 

In this section, we illustrate the use of our algorithm on three problem examples. The 

first example is taken from Harris and Ioannou (1998) to schedule a repetitive project to 

minimize crew idle time. In this example, we solely rely on the recursive search to solve the 

problem, without starting the horizon-varying approach. In a second example, we make use of 

the horizon-varying approach to report the complete trade-off between project duration and 

work continuity. A last example describes the scheduling of a real-life project that aims at the 

construction of a tunnel at the Westerschelde in the Netherlands. 

 

5.1 A six-unit repetitive project 

In figure 1 we illustrate an activity-on-the-node project network for the activities in the 

first unit, as published in Harris and Ioannou (1998). Each of these 6 activities have a 

duration, denoted above the node and need to use a certain resource Ri, denoted below the 

node. The solid lines are technological precedence relations between the activities. The 

default value for each precedence relation is a finish-start relationship with a minimal time-lag 

of zero (i.e. FSmin = 0), unless indicated otherwise. In this example, we imply a minimal time-

lag of 2 time units between activity 1 and 3 (indicated as a ‘lead time’ in Harris and Ioannou 

(1998)). Note that our algorithm can also deal with maximal time-lags between activities. 

Insert Figure 1 About Here 
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If figure 2, we display the complete network for a project with six repeating units, each 

having the six discrete activities of figure 1. The dashed lines link similar activities from unit 

to unit and are used to represent resource availability constraints. Note that n’ = K * n + 2 = 6 

* 6 + 2 = 38 and |A’| = K * |A| + n * (K – 1) + 2 = 6 * 7 + 6 * 5 + 2 = 74. Since we assume 

that the work to be done in units 3 and 4 for activity 1 is twice the work to be done in unit 1, 

we have doubled the duration of activities 13 and 19. Moreover, we have added a minimal 

time-lag of five between unit 3 and unit 4 (i.e. 5min
20,14 =FS ). This planned interruption in 

resource continuity is to meet some known or predicted circumstance. Harris and Ioannou 

(1998) mention that the delivery of materials by a subcontractor’s truck is sufficient to 

completing only three units, and consequently, a work break period is needed after unit 3. 

Remark that this repetitive project does not have an activity 3 in unit 5, which is a 

characteristic of an atypical project. To that purpose, we set the duration of activity 27 to zero. 

Of course, we could also have deleted this activity from the network. 

The algorithm starts with calculating the minimal value for the resource idle time (i.e. 

min) by solving the recursive search procedure with a project deadline δn+1 = ∞. The reported 

value idle = 5 with a total project duration of 30. Since this project duration equals the critical 

path length, there is no need to start the while-loop of the horizon-varying approach. Indeed, 

by increasing the project deadline δn+1 we will not be able to further decrease the idle time to a 

value smaller than 5 (because of the precedence relation 5min
20,14 =FS ). The starting times 

reported by the algorithm are '
0s  = s01 = 0, '

1s  = s11 = 0, '
2s  = s21= 6, '

3s  = s31= 4, '
4s  = s41= 11, 

'
5s  = s51 = 19, '

6s  = s61 = 24, '
7s  = s12 = 2, '

8s  = s22 = 7, '
9s  = s32 = 8, '

10s  = s42 = 14, '
11s  = s52 = 

20, '
12s  = s62 = 25, '

13s  = s13 = 4, '
14s  = s23 = 8, '

15s  = s33 = 12, '
16s  = s43 = 17, '

17s  = s53 = 21, '
18s  

= s63 = 26, '
19s  = s14 = 8, '

20s  = s24 = 14, '
21s  = s34 = 16, '

22s  = s44 = 20, '
23s  = s54 = 22, '

24s  = s64 

= 27, '
25s  = s15 = 12, '

26s  = s25 = 15, '
27s  = s35 = 20, '

28s  = s45 = 23, '
29s  = s55 = 23, '

30s  = s65 = 

28, '
31s  = s16 = 14, '

32s  = s26 = 16, '
33s  = s36 = 20, '

34s  = s46 = 26, '
35s  = s56 = 24, '

36s  = s66 = 29 

and '
37s  = s76 = 30.  

Insert Figure 2 About Here 

In figure 3, we show the RSM diagram based on these starting times, which is similar 

to the diagram given by Harris and Ioannou (1998). The vertical axis shows the work to be 
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done in the different units while the horizontal axis denotes the time line. They refer to the 

slope of each line as the unit production rate, i.e. the number of repetitive units that can be 

accomplished by a resource during a unit of time. Consequently, it can be calculated as the 

inverse of the duration of that activity at that unit. Total project duration equals 30 days and 

the resource idle time amounts to 5 days (i.e. the work break between activity 14 and 20, i.e. 

5min
20,14 =FS  in our network of figure 2). The minimal time-lags between activities 1 and 3 at all 

units (i.e. 2min
33,31

min
27,25

min
21,19

min
15,13

min
9,7

min
3,1 ====== FSFSFSFSFSFS ) do not affect the resource idle 

time. The line in bold is the so-called controlling sequence and determines the length of the 

project duration. 

Insert Figure 3 About Here 

5.2 The horizon-varying approach 

In this section, we illustrate the use of the horizon-varying approach on the project 

example of figure 4. In this figure, we display the unit network with 10 non-dummy activities. 

In table 1, we report the activity durations from unit 1 to unit 5. Remark that we assume that 

crew productivity increases along the units, which denotes a learning effect of crews. 

Insert Figure 4 & Table 1 About Here 

In figure 5, we display the complete trade-off profile between the total project duration 

and work continuity by means of the black bars. This is the result of our horizon-varying 

approach starting from the critical path length cpl = 43 to a project duration of 55 with 

minimal work discontinuity (min). Note that the minimal work discontinuity min equals zero 

since only zero time-lags are involved (cpm-case). This trade-off profile can be used as a 

decision tool to determine an optimal level of resource idle time in the schedule. By assigning 

costs to both resource idle time and project duration, we can determine the optimal point in 

the complete profile with an associated project duration and idle time level. In the sequel, we 

use cr to denote the cost per unit resource idle time and cd to denote the cost per time unit that 

has to be paid during each day of the project duration. Consequently, the total cost of a 

schedule with total project duration Cmax and corresponding resource idle time (idle) equals ct 
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= cr * idle + cd * Cmax. In figure 5, we have reported the total cost ct by four lines depending 

on the values for cr and cd. 

Insert Figure 5 About Here 

The optimal project duration and the corresponding level of idle time depend on both 

the values for cr and cd. Each unit increase in the project duration involves an extra cost cd 

while the total cost will be decreased by cr times the idle time reduction due to the project 

duration increase. Consequently, a project duration increase is only beneficial as long as 
r

d

c

c
 is 

smaller than the (negative) slope of the crew idle time curve as displayed in figure 5. As an 

example, figure 5 shows three values for the slope, i.e. 4 between 43 and 45, 3 between 45 and 

49, 2 from 49 onwards. Consequently, 4 different solutions can be optimal, depending on the 

cost values cd and cr:  

 

• 
r

d

c

c
> 4:  It is never beneficial to increase the project duration, and the optimal 

solution equals the critical path length 43. In figure 5, we have used cd = 

63 and cr = 14 and the total cost curve (Cost 1) has its lowest point at 

project duration 43 

• 3 < 
r

d

c

c
 ≤ 4:  It is beneficial to increase the project duration up to 45. This is displayed 

by the curve labelled “Cost 2” with cd = 63 and cr = 18. 

• 2 < 
r

d

c

c
 ≤ 3:  It is beneficial to increase the project duration up to 49. This is displayed 

by the curve labelled “Cost 3” with cd = 62.5 and cr = 25. 

• 
r

d

c

c
 ≤ 2:  A maximal increase in the project duration leads to the lowest cost. This 

is displayed by the curve labelled “Cost 4” with cd = 57 and cr = 38 with 

a minimal cost for a project duration of 55. 
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As a summary, the optimal project duration always coincides with a breakpoint in the 

trade-off curve between idle time and project duration. In section 6.1, we will show that this 

optimal point can be found immediately, without enumerating this complete trade-off curve. 

 

5.3 The Westerschelde Tunnel 

The Westerschelde Tunnel project is a huge project with a groundbreaking boring 

technique at the Netherlands. This tunnel provides a fixed link between Zeeuwsch-Vlaanderen 

and Zuid-Beveland, both situated in the Netherlands. It is a bored tunnel with a length of 6.6 

kilometres. There are two tunnel tubes and in each tube, there are two road lanes. A detailed 

description of this project can be found in Vanhoucke and Van Osselaer (2004) or on 

http://www.westerscheldetunnel.nl. 

The project under study involves the construction of the transverse links which connect the 

two tunnel tubes every 250 metres, resulting in 26 links along the tunnel. Therefore, this project can be 

represented as a unit network, which will be repeated for 26 times. These connections serve as an 

emergency exit and account for 10% of the construction budget. Construction is done by means of a 

freezing technique in order to guarantee watertight transverse links between the tubes. The 

Westerschelde Tunnel is the first time for the freezing technique to be used on such a large scale. 

During the scheduling phase, we analyzed the idle time of two types of resources by 

comparing two schedules: the earliest start schedule (ESS, no minimization of resource idle 

time) and the work continuity schedule (WCS, minimization of resource idle time). The two 

types of resources are the crews that pass along the 26 units and large freezing machines that 

are used for the freezing activities at each unit. 

The ESS clearly results in a lot of resource idle time, both for the freezing machine 

(within each unit) and for the crews (along the units). The idle time of crews, on the one hand, 

results from time-lags between the finishing of work at one unit and the start at the next unit. 

The idle time of the freezing machine, on the other hand, appears within units, due to the 

earliest starting time of all activities. As an example, the idle time between units 4 and 5 of 

crew 2 and the idle time of the freezing machine at unit 5 has been indicated at figure 6. The 

total crew idle time in the ESS schedule amount to 165 days while the total freezing idle time 

over all units is 343 days. The total scheduled project duration of the transverse link 

subproject equals 380 days. 

Insert Figure 6 About Here 
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Although the idle time for both the crews and the freezing machines is extremely 

important, it is completely ignored by the ESS. The costs of the crew are generally as follows: 

An ordinary employee has a cost of – on the average - € 40/manhour while a specialist 

receives – on the average - € 60/manhour. Consequently, the average cost of one man-hour 

amounts to € 50. Each crew consists of 3 people that work for 8 hours/day, resulting in a total 

cost of 50 * 3 * 8 = € 1,200 per day. The efficient use of large freezing machine during the 

construction of the tunnel is also crucial since the company has to pay € 3,000 (cr) for every 

day that this machine is in operation. Therefore, a hammock activity between two activities 

was added at every unit in the original ESS in order to indicate that all the work in between 

these activities was performed at a temperature below zero. Consequently, this hammock 

activity covers a chain of activities that have to be executed at a low temperature. The 

duration of this hammock activity is variable and equals the total length between the start of 

the end activity and the start activity of this chain. The ESS, however, does not minimize the 

duration of the hammock activity in any way.  

Taking these cost figures into account, we derive the following outline of costs for the 

ESS. The crew idle time takes 165 days, resulting in 165 * € 1,200 = € 198,000 while the cost 

of the idle time of all the freezing machines equals 343 days * € 3,000 = € 1,029,000. The 

WCS minimizes the resource idle time and results in the following outline of costs. The crew 

idle time cost amounts to 107 days * € 1,200 = € 128,400 and the idle time of all the freezing 

machines has a cost of 5 days * € 3,000 = € 15,000. The difference in idle time cost between 

the two schedules amounts to € 1,083,600. For a detailed description of the project, we refer 

the reader to Vanhoucke and Van Osselaer (2004). 

 

6 COMPUTATIONAL RESULTS 

In the previous section, we focused on the trade-off between resource idle time 

minimization and project duration. In this section, the focus is on the efficiency of the 

algorithmic approach of section 4. In order to test the efficiency of our horizon-varying 

approach for scheduling repetitive projects, we have coded it in Visual C++ version 6.0 under 

Windows NT and run it on a Toshiba personal computer with a Pentium IV, 2 GHz processor 

using two different testsets. The first testset is the well-known PSPLIB testset (Kolisch and 

Sprecher 1997), used to report computational results of our procedure and to show the ability 

to solve large real-sized project scheduling problems. The second set is composed of instances 
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generated by RanGen (Demeulemeester et al. 2003) and is used to study the impact of 

different parameters on the performance of the algorithm.   

The generated network instances of both sets contain solely the unit networks (i.e. 

networks for one unit level) and need to be extended in order to incorporate repetition of 

activities. To that purpose, we extend the problem instances with repeating activities and 

corresponding durations by means of two extra parameters: the number of repetitive units K 

and the rate factor r f. The number of repetitive units K is used to denote the number of units in 

the complete project and equals the number of times the unit network is copied along the 

stages, resulting in the ladder-like appearance. We make use of a rate factor rf to generate the 

durations of the repeating activities at the various levels. The rate factor will be used as 

follows: 1* −= ikfik drd . Consequently, a rate factor r f = 1 means that all activities have the 

same durations along the units. A r f < 1 will be used to incorporate learning effects of crews 

along the units while r f > 1 denotes an increase of the activity duration along the units. This 

can occur when work becomes more complex when the unit level increases.  

The PSPLIB dataset contains 480 instances for the 30, 60 and 90 activity networks and 

600 instances for the 120 activity networks. Each network has been extended to 5 units and 

the rate factor has been chosen randomly. Consequently, the total number of problem 

instances equals 2,040. The results of this first test set are reported in section 5.1. In order to 

test the impact of different parameters on the effectiveness and efficiency of the procedure, we 

have constructed the second dataset as follows: Each activity-on-the-node instance contains 

30 activities and has been generated with the following settings. The order-strength OS 

(Mastor, 1970) is set at 0.25, 0.50 or 0.75 and is defined as the number of precedence relations 

(including the transitive ones) divided by the theoretical maximum of number of precedence 

relations. The number of repetitive units K is set at 5, 10, 15 or 20 and the rate factor r f is set 

at 0.8, 0.9, 1.0, 1.1, 1.2 or random. Using 10 instances for each problem class, we obtain a 

problem set with 720 test instances. The results of this second dataset are reported in section 

5.2. 

 

6.1 PSPLIB instances 

Table 2 displays the results for the horizon-varying approach on the PSPLIB testset. 

The table contains information about the CPU time and the number of runs. The number of 

runs equals the number of iterative call to the recursive search procedure (i.e. the number of 

repetitions of the while loop of section 4.4) and equals the number of trade-off points on the 
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complete duration/idle time curve between the minimal and maximal project duration. 

Consequently, the row with the label “average CPU/Run” displays the average CPU time for 

solving the problem with a given deadline. The column labelled “overall” displays the 

information for the complete PSPLIB set, while the remaining columns distinguish between 

the 4 testsets with 30, 60, 90 and 120 activities. 

Insert Table 2 About Here 

The results illustrate the positive effect of the number of activities on the problem 

complexity. Nevertheless, projects with up to 120 activities and 5 units (i.e. a network with 

602 activities) can be scheduled in less than 5 seconds. The results also indicate the positive 

effect of the number of activities on the number of runs. Indeed, more activities result in a 

larger time window between the critical path length and the maximal project duration and, 

consequently, more runs are needed. The CPU-time per run, however, remains very low, even 

for projects with a large number of activities. 

In section 4.1 we used a labelling step to simulate attraction between activities at the 

first and last unit. In doing so, we minimized idle time between these units. The value of the 

labels, which function as a weight of attraction, were chosen to be -1 at the first unit and +1 at 

the last unit. The values of all other labels, including the labels for the single start dummy and 

the single end dummy were chosen to be zero. If, however, there is cost information available 

about the project duration (cd) and idle time of resources (cr), the values cannot be chosen 

equally. Instead, the trade-off between resource idle time and project duration depends on 

these cost values and therefore, the label values need to be chosen accordingly.  

To that purpose, we replace the unit weights of each activity by the resource idle time 

cost cr. (i.e. - cr at the first unit and cr at the last unit). Moreover, we assign a negative label to 

the single start dummy activity with weight -cd and a positive label to the single end dummy 

with weight cd. In doing so, the project duration is considered as it were a resource with idle 

time cost equal to cd. Consequently, we implicitly embed the trade-off between idle time and 

project duration by assigning the appropriate weights to the labels. Depending on the value of 

r

d

c

c
, the optimal project duration that results in a minimal total cost will be found without 

enumerating the complete horizon. In section 5.2, we showed that this optimal point always 
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coincides with a breakpoint in the trade-off curve between idle time and project duration. The 

column “average CPU/Run” of table 2 illustrates that this can be done in a very efficient way. 

 

6.2 RanGen instances 

In table 3 we report on the computational results for the horizon-varying procedure on 

the RanGen instances for the different settings of the number of units K, the rate factor and the 

order strength OS. Again, we display information about the CPU-time (in seconds), the 

number of runs in the horizon-varying approach, the CPU-time per run and the average 

number of iterations. The latter equals the average number of times the recursion has been 

recalled within the recursive search method (step 3). Consequently, it displays the number of 

times an allowable displacement interval has been calculated in order to shift a set of activities 

further in time. 

The row labeled ‘overall’  gives the average results over all 720 instances and 

illustrates that our procedure is very efficient. Our procedure needs, on the average, 0.049 

seconds to schedule a repetitive project with a given deadline. The number of iterations 

amounts to – on the average – 168,609, with peaks to more than 770,000 for project with 20 

units. This illustrates that the recursive search method, which is the body of the algorithm, is 

very efficient. The remaining rows show more detailed results. 

The row labeled ‘order strength’ shows that a larger value for the OS results in a more 

complex problem to solve. These results are in line with previous similar research in literature 

and show that the more dense the network, the more recursion steps are needed and hence, the 

more difficult the problem (Vanhoucke et al. (2001), De Reyck and Herroelen (1998)). Note 

that the OS-values are only valid on the unit network level. Due to the incorporation of 

repetitive units, the OS of the complete CPM network will have another, unknown value. 

The row labeled ‘number of units’ clearly shows a positive correlation between the 

number of units and the problem complexity. Clearly, this stems from the increasing number 

of activities due to an increasing number of units. Indeed, a repetitive project with 30 unit 

activities and 20 units contains 30 * 25 + 2 = 602 activities that are subject to the horizon-

varying approach. Notice that the total CPU-time denotes 30.920 seconds and repeats the 

recursive search – on the average – 416.167 times. Consequently, even for problem types with 

602 activities in total, the CPU-time only accounts for 0.074 seconds per run. 

The row labeled ‘rate factor’ shows the influence of the durations of activities along 

the units on the problem complexity. The results show a positive correlation between the rate 
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factor and the computational effort to solve the problem. This illustrates that learning effects, 

which is translated in decreasing activity durations, have a positive effect on the problem 

complexity. The main reason is that the larger the rate factor, the larger the number of 

combinations in the complete trade-off profile and, consequently, the larger the number of 

recursive calls in the horizon-varying approach. However, we detect a similar relation for the 

average CPU-time per run, although average CPU-times are very low. 

Insert Table 3 About Here 

In order to test our algorithm for projects in which generalized precedence relations 

are represented, we have extended the test instances with minimal and maximal time-lags and 

reported on computational results. The efficiency of our horizon-varying procedure shows, 

however, similar results as found in table 3. Therefore, we do not report the separate results. 

 

7 CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we provided a literature summary of project scheduling problem with 

repeating activities and stressed the importance of so-called work continuity constraints. We 

have presented an algorithm in order to detect the complete trade-off profile between work 

continuity and the project deadline of repetitive projects. To that purpose, we have embedded 

a recursive search procedure into a horizon-varying approach that solves the problem 

iteratively between two extreme deadlines. The shortest deadline corresponds with a large 

value of resource idle time while the longest deadline corresponds with a schedule with 

minimal resource idle time.  

The consequences of work continuity constraints in projects have been illustrated by 

means of three project examples. We have shown that the incorporation of work continuity 

constraints may involve a trade-off between resource idle time minimization and project 

duration. Therefore, a careful analysis needs to be made, based on cost figures, to determine 

the optimal level of resource idle time and total project duration. 

The efficiency of the algorithm has been tested on a PC and the results obtained are 

encouraging. Even repetitive project with up to 30 unit activities and 20 repetitive units can be 

solved within 0.07 seconds per deadline run. Due to the large number of possibilities in the 

complete trade-off profile between the project duration and resource idle time, the CPU-times 

can increase to – on the average – 30 seconds for these projects. Clearly, the number of 
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activities, the order strength and the number of units have a negative effect on the efficiency 

of the procedure. Still, the procedure can solve large-sized problems in an efficient way. The 

results reveal a positive correlation between the rate factor and problem complexity. 

In our future research, we will extend this problem type with additional features in 

order to further tighten the gap between the project scheduling literature and real-life project 

management. More precisely, we would like to investigate time/cost trade-offs in repetitive 

projects with work continuity constraints. Moreover, we would like to investigate the presence 

of extra renewable resource constraints that are not the subject of work continuity constraints 

but that make the scheduling very complex because of limited availability. Finally, we would 

like to continue with the complete trade-off profile between total project duration and work 

continuity (see figure 5) and perform some sort of sensitivity analysis on the cost values.  
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FIGURE 1 

An example project with 6 repeating activities 
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FIGURE 2 

A repetitive project network of figure 1 with 6 units 
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FIGURE 3 

RSM diagram for a six units project of figure 2 
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FIGURE 4 

An example project with 10 repeating activities 
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FIGURE 5 

Trade-off between work continuity and project deadline and the corresponding total 

cost 
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FIGURE 6 

Gantt chart obtained by the ESS of the project 
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TABLE 1 

Activity durations dik for the project example 

Activity i 
Unit k 

1 2 3 4 5 6 7 8 9 10 

  1 8 5 1 6 10 1 1 3 7 4 
  2 7 4 1 5 8 1 1 2 6 3 
  3 6 3 1 4 7 1 1 1 5 2 
  4 5 2 1 3 6 1 1 1 4 1 
  5 4 1 1 2 5 1 1 1 3 1 
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TABLE 2 

Computational results for the horizon-varying approach on the PSPLIB instances 

overall J 30 J 60 J 90 J 120
CPU time
Average 2.563 0.028 0.552 4.148 4.933
St.Dev. 2.804 0.018 0.301 2.090 2.679
Min 0.000 0.000 0.110 0.461 0.801
Max 22.703 0.121 2.033 12.298 22.703
Run
Average 72.211 35.150 72.590 82.452 93.363
St.Dev. 31.517 16.513 22.942 23.121 26.111
Min 1 1 21 25 34
Max 201 105 153 144 201
Average CPU/Run
Average 0.035 0.001 0.008 0.050 0.053  
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TABLE 3 

Computational results for the horizon-varying approach on the RanGen instances 

Average Iterations
Average St.Dev. Average St.Dev. CPU/Run Average

Overall 9.229 41.001 186.636 388.717 0.049 168,609
K
5 0.034 0.037 36.494 23.617 0.001 4,050
10 0.644 1.018 95.644 89.173 0.007 33,472
15 5.320 11.071 198.239 252.886 0.027 139,688
20 30.920 77.340 416.167 671.095 0.074 497,228
Rate Factor
Random 1.191 2.847 60.992 79.295 0.020 20,403
0.8 0.143 0.187 17.075 8.938 0.008 2,779
0.9 0.329 0.415 32.533 14.552 0.010 6,639
1.0 3.608 5.754 135.633 89.588 0.027 61,360
1.1 8.802 19.390 195.758 174.902 0.045 142,755
1.2 41.303 91.882 677.825 743.573 0.061 777,719
OS
0.25 2.467 8.725 118.767 274.615 0.021 56,442
0.50 7.292 27.418 201.875 416.491 0.036 158,564
0.75 17.929 64.061 239.267 445.029 0.075 290,822

CPU time Run

 

 

 

 

 


