
Vlerick Repository
Work continuity constraints in project scheduling

Authors Vanhoucke, Mario

Download date 2025-01-15 14:28:29

Link to Item http://hdl.handle.net/20.500.12127/1842

http://hdl.handle.net/20.500.12127/1842

D/2005/6482/10

Vlerick Leuven Gent Working Paper Series 2005/10

WORK CONTINUITY CONSTRAINTS IN PROJECT SCHEDULING

MARIO VANHOUCKE

Mario.Vanhoucke@vlerick.be

2

WORK CONTINUITY CONSTRAINTS IN PROJECT SCHEDULING

MARIO VANHOUCKE

Vlerick Leuven Gent Management School

Contact:

Mario Vanhoucke

Vlerick Leuven Gent Management School

Tel: +32 09 210 97 81

Fax: +32 09 210 97 00

Email: Mario.Vanhoucke@vlerick.be

3

ABSTRACT

Repetitive projects involve the repetition of activities along the stages of the project. Since the

resources required to perform these activities move from one stage to the other, a main

objective of scheduling these projects is to maintain the continuity of work of these resources

so as to minimize the idle time of resources. This requirement, often referred to as work

continuity constraints, involves a trade-off between total project duration and the resource idle

time.

The contribution of this paper is threefold. Firstly, we provide an extensive literature summary

of the topic under study. Although most research papers deal with the scheduling of

construction projects, we show that this can be extended to many other environments.

Secondly, we propose an exact search procedure for scheduling repetitive projects with work

continuity constraints. This algorithm iteratively shifts repeating activities further in time in

order to decrease the resource idle time. We have embedded this recursive search procedure in

a horizon-varying algorithm in order to detect the complete trade-off profile between resource

idle time and project duration. The procedure has been coded in Visual C++ and has been

validated on a randomly generated problem set. Finally, we illustrate the concepts on three

examples. First, the use our new algorithm is illustrated on a small fictive problem example

from literature. In a second example, we show that work continuity constraints involve a

tradeoff between total project duration and the resource idle time. A last example describes

the scheduling of a well-known real-life project that aims at the construction of a tunnel at the

Westerschelde in the Netherlands.

Keywords: Project Management; CPM; work continuity; repetitive project scheduling.

4

1 INTRODUCTION

Construction projects are often characterised by repeating activities that have to be

performed from unit to unit. Highway projects, pipeline constructions and high-rise buildings,

for example, commonly require resources to perform the work on similar activities that shift

in stages. Indeed, construction crews perform the work in a sequence and move from one unit

of the project to the next. This is mainly the result of the subdivision of a general activity (e.g.

carpentry) into specific activities associated with particular units (e.g. carpentry at each floor

of a high-rise building).

The repetitive processes of these construction projects can be classified according to

the direction of successive work along the units. In horizontal repetitive projects the different

processes are performed horizontally, as seen in pipeline construction or paving works. These

construction projects are often referred to as continuous repetitive projects or linear projects

due to the linear nature of the geometrical layout and work accomplishment. When progress is

performed vertically, we refer to vertical repetitive projects, among which high-rise building

construction is the classical example. Rather than a number of activities following each other

linearly, these construction projects involve the repetition of a unit network throughout the

project in discrete steps. It is therefore often referred to as discrete repetitive projects. Kang,

Park and Lee (2001) argue that construction projects can consist of both horizontal and

vertical repetitive processes among several multi-storey structures and refer to this type as

multiple repetitive projects.

El-Rayes and Moselhi (1998) distinguish between typical and atypical repetitive

activities. Typical repetitive activities are characterized by identical durations over all units,

while atypical repetitive activities assume variation of duration from one unit to another. This

variation can be attributed to variations in the quantities of work encountered or crew

productivity attained in performing the work of these units (Moselhi and El-Rayes, 1993).

A crucial point in scheduling these projects is to ensure the uninterrupted usage of

resources of similar activities between different units. Idleness that does not find its roots in

forced causes, such as bad weather or equipment breakdowns, is classified as unforced

idleness or waste. This waste in repetitive projects stems from resources (crew, equipment,…)

waiting for preceding resources to finish their work and has to be eliminated to maintain

continuity of work (Harris and Ioannou, 1998). Consequently, in order to maintain work

continuity, repetitive units must be scheduled in such a way as to enable timely movement of

5

resources from one unit to the next, avoiding resource idle time. This is knows as the work

continuity constraints (El-Rayes and Moselhi, 1998).

In this paper, we focus on the vertical (or discrete) repetitive project scheduling

problem with work continuity constraints. The organization of the paper is as follows. In

section 2 we present an overview of the scheduling literature of projects with repeating

activities. Section 3 describes the features of the project scheduling problem under study. In

section 4 we present our algorithm for scheduling a repetitive project with work continuity

constraints. In section 5 we illustrate our new algorithm on three project examples. Section 6

reports detailed computational results on two randomly generated problem sets. In section 7

we give our overall conclusions and suggestions for future research.

2 LITERATURE OVERVIEW

The effective planning, scheduling and control of repetitive construction projects are

of crucial importance and lead to a reduced construction time, reduced cost overruns and

minimization of disputes (Callahan et al., 1992). Different scheduling methods have been

proposed in literature in order to obtain these benefits. A common remark, however, is that

most techniques dealing with this scheduling problem are overshadowed by the critical path

method (CPM) which lacks a number of features needed in the repetitive scheduling industry.

Therefore, a need exists to expand the features of the CPM to include some extra repetitive

scheduling features. El-Rayes (2001) states that scheduling of repetitive construction projects

can be significantly improved by three main practical requirements, i.e. (i) crew work

continuity, (ii) optimize scheduling and resource utilization so as to minimize project duration

and (iii) the integration of repetitive and nonrepetitive scheduling techniques. These details of

these three requirement are explained below.

(i) The application of crew work continuity constraints provides room for an

effective resource utilization strategy by minimizing crew idle time. Consequently, this leads

to the maximization of the benefits from the learning curve effect for each crew (Shtub et al.,

1996) and the minimization of the off-on movement of crews on a project once work has

begun (Ashley, 1980, Birrell, 1980). However, Russell and Wong (1993) take a critical look

and state that this requirement should not be strictly enforced in scheduling repetitive

activities. Selinger (1980) recognizes a trade-off in scheduling repetitive units: work

interruption indeed results in an increased direct cost because of the idle crew time and

6

therefore needs to be avoided. But violation of these work continuity constraints by allowing

work interruption may possibly lead to an overall project duration reduction and the

corresponding indirect costs, and consequently, a careful trade-off should be made between

these two extremes.

(ii) We note that minimizing the project duration is a more complex process for

repetitive projects than for nonrepetitive ones. Indeed, the simple logic of crashing critical

activities in order to shorten the total project duration does no longer hold with the presence of

work continuity constraints. Therefore, Rowings and Harmeling (1993, 1994) proposed the

linear scheduling method (LSM) to determine the critical path in a linear schedule. Similar to

the forward and backward calculations of CPM, the algorithm identifies to so-called

controlling activity path (CAP). Activities or segments of activities not on the CAP must have

float (Harmelink, 2001).

(iii) Most construction projects contain both repetitive and nonrepetitive activities.

Since the nonrepetitive activities can be scheduled using traditional network techniques

while the repetitive activities require more specialized tools with work continuity

features, the two scheduling techniques need to be combined in an efficient scheduling

model (O’Brein et al, 1985; Russell and Wong, 1993).

In this paper we focus on the work continuity constraints of repetitive project

scheduling by taking both the resource idle time and the total project duration into account. In

doing so, we take into account the practical requirements mentioned above and recognize the

trade-off between idle time minimization and project duration.

As mentioned previously, traditional network techniques such as the critical path

method have been criticized in literature for their major drawbacks when applied to

scheduling of repetitive projects. According to Reda (1990), the use of the CPM for

scheduling repetitive projects has three major disadvantages. First, CPM needs to rely on a

large number of activities needed to represent repetitive projects. Indeed, each unit in a

repetitive network contains the same activities which can be represented by a project network.

Due to the repeating character of the activities between the units of the project, the complete

CPM network will have a ladder-like appearance. Each stair denotes the work at one unit

consisting of the several activities and precedence relations for that unit. Since the CPM

7

network shows all the links between similar activities of successive units, the number of nodes

and arcs of the complete network will be very large. A second drawback is the inability of

CPM to guarantee continuity of work. Although it has been reported by several authors that

the uninterrupted utilization of resources is an extremely important issue, neither CPM nor its

resource-oriented extensions take these work continuity constraints into account. Finally,

CPM incorporates the notion of activity crashing by assigning extra resources to the activities,

resulting in the well-known time/cost trade-off activity profile. When applying this principle

to repetitive projects, activity crashing at one unit leads to a modification of production rates

between similar activities at different units. Mattila and Abraham (1998) come to similar

conclusions and focus on linear construction as a segment of construction scheduling in which

CPM is inadequate. This includes the inability of CPM to (i) model work continuity

constraints, (ii) to handle the large number of activities needed to represent repetitive projects

and (iii) to accurately reflect actual conditions.

Recognition of the drawbacks of traditional CPM network models in scheduling

repetitive projects has led to the development of several scheduling methodologies under

different names. Harris and Ioannou (1998) give an overview and distinguish between

methodologies for vertical projects with discrete units and horizontal projects where progress

is measured linearly. For projects with discrete units, they mention line of balance (Carr and

Meyer, 1974; Harris and Evans, 1977), construction planning technique (Peer, 1974; Selinger,

1980), vertical production method (O’Brein, 1975), time-location matrix model (Birrell,

1980), time space scheduling method (Stradal and Cacha, 1982), disturbance scheduling

(Whiteman and Irwig, 1988), horizontal and vertical logic scheduling for multistorey projects

(Thabet and Beliveau, 1994). For horizontal projects, developed techniques are time versus

distance diagrams (Gorman, 1972), linear balance charts (Barrie and Paulson, 1978), velocity

diagrams (Dressler, 1980), linear scheduling method (Johnston, 1981; Chrzanowski and

Johnston, 1986; Russell and Casselton, 1988). In their paper, Harris and Ioannou (1998)

integrate these methods into the repetitive scheduling method (RSM) which is a practical

scheduling methodology that ensures continuous resource utilization applicable to both

vertical and horizontal construction scheduling. In section 5.1 of this paper, we will refer to

the project example of Harris and Ioannou (1998) in order to compare our algorithm with the

repetitive scheduling method.

Due to the overwhelming use of the CPM technique in repetitive project scheduling, a

number of attempts have been made to compare this traditional technique with the more

specialized tools. Schoderbek and Digman (1967) have introduced PERT/LOB as an attempt

8

to combine the merits presented by the Program Evaluation and Review Technique with the

Line-Of-Balance principles. Al Sarraj (1990) presented a mathematical model for LOB in

order to find the start and finish times for repetitive activities and the corresponding project

duration. Suhail and Neale (1994) develop a new methology to integrate CPM and LOB. To

that purpose, they incorporate the resource leveling principles and float times calculations of

the CPM into the LOB technique. Yamin and Harmelink (2001) compare the linear

scheduling method (LSM) and the critical path method (CPM) in detail and conclude that

specialization can be beneficial to the project. However, although LSM can be superior to

CPM for very specific projects, further research is needed to elevate the LSM to the CPM

level. In this paper, we try to narrow the gap between the traditional scheduling methods and

the repetitive project scheduling requirements by adding work continuity constraints into the

CPM scheduling philosophy. Despite the fact that the number of activities of a CPM network

for a repetitive project can increase dramatically, we will show in the computational results

section that this does not harm the efficiency of our new algorithm in a severe way.

3 WORK CONTINUITY CONSTRAINTS FOR CPM NETWORKS

Throughout this paper, we assume that a project is represented by an activity-on-the-

node (AoN) network where the set of nodes, N, represents activities and the set of arcs, A,

represents the precedence constraints. Since progress is performed in discrete steps (as in

vertical repetitive projects), we assume that this network is repeated in K units. The duration

of each activity i at unit k is denoted by dik (1 ≤ i ≤ n and 1 ≤ k ≤ K). In a similar way, we

denote the starting and finishing time of activity i at unit k by sik and fik, respectively.

Consequently, we extend the original unit network to a large network consisting of repeating

activities between units. Moreover, we add a dummy start activity 0 at the first unit to denote

the start of the project. This dummy activity is a predecessor for all activities of the first unit

that have zero predecessors. In a similar way, we add a dummy end activity n + 1 at the last

unit K to denote the finishing of the project. Consequently, this activity is a successor for all

activities belonging to unit K with no successors.

Resources are needed for each activity i that shifts along the units, from unit 1 to unit

K. The problem under study involves the minimization of the idle time of resources between

different units for a project with a given deadline.

9

In literature, work continuity constraints are often linked with the minimization of

crew idle time. In the sequel of this paper, we use the more general term, resource idle time,

since the minimization of idle time of resources may not be restricted to crews only. Two

examples are given below:

• De Boer (1998) introduced spatial resources as a resource type that is not

required by a single activity but rather by a group of activities. Examples are dry

docks in a ship yard, shop floor space or pallets. Since the spatial resource unit is

occupied from the first moment an activity from the group starts until the last

activity of the group finishes, work continuity constraints can be of crucial

importance.

• Gong (1997) has introduced the concept time dependent cost (TDC) as a part of

the project costs that changes with the variation of activity times. The TDC is

defined as the product of unit time cost and service time. Goto et al. (2000)

elaborate on that concept and argue that the service time of a time dependent cost

resource is the time duration starting form the first use and ending at the last.

They refer to the use of a tower crane in the construction industry and argue that

the reduction of waiting times of TDC resources naturally reduces the time

dependent cost.

These research papers motivated us to use the general term ‘resource idle time’ rather

than the more specific ‘crew idle time’. The project scheduling problem with work continuity

constraints can be formulated as follows:

10

∑ −
n

i
iiK ss

1=
1)(Minimize [1]

Subject to

jkijkkik sls ≤+ k = 1, …, K and Aji ∈∀),([2]

1,1, ++ ≤+ kikiikik sls i = 1, …, n and k = 1, …, K – 1 [3]

001 =s [4]

1,1 ++ ≤ nKns δ [5]

+∈ intiks i = 1, …, n and k = 1, …, K [6]

+
+ ∈ int, ,101 Knss [7]

where l ijkl denotes the time-lag for the precedence relation between activity i on unit

level k and activity j on unit level l. These time-lags representing the different types of

generalized precedence relations can be represented in a standardized form by reducing them

to minimal start-start precedence relations as shown by the transformation rules of Bartusch et

al. (1998). As an example, l ijkk has to be replaced by dik in Eqs. [2] to model the simple CPM

case where only minimal precedence relations with zero time-lags are involved.

The objective in Eq. 1 denotes the work continuity constraints and minimizes the

resource idle time between similar activities at different units. We note that the word

‘constraint’ is somewhat confusing since the work continuity of the schedule is guaranteed in

the objective function of the model. Since the resource idle time is measured for resources that

shift between units, it is sufficient to minimize the timespan of activities between the first and

last unit. Indeed, these resource are needed at the start of the activity at the first unit and will

only be released at the completion of this activity at the last unit K. Consequently, the starting

times of all intermediate activities have no influence on the idle time of this resource and are

therefore not included in the objective function. The constraint set given in Eq. 2 maintains

the (generalized) precedence relations among the activities of the project network at each unit.

The constraint set in Eq. 3 maintains the (generalized) precedence relations among similar

activities between consecutive units. Eq. 4 forces the dummy start activity 0 to start at time

zero and Eq. 5 forces the dummy end activity n + 1 (and consequently the project) to end on

or before a negotiated deadline 1+nδ . Eq. 6 ensures that the activity starting times assume

nonnegative integer values. Eq. 7 ensures that the single dummy start and single dummy end

activity takes a nonnegative integer value.

11

Note that the formulation of Eqs.[1]-[7] is general and allows the use of both typical

and atypical activities. Therefore, we use lijkk rather than a unit-independent lij, to express that

the duration of each activity is not assumed to have a fixed value over all units. In doing so,

we allow to incorporate crew productivity, differences in amounts of work between units or

learning effects of crews. It has been noted by several authors that it may be necessary to

incorporate the learning effects into activity time estimates in order to improve the accuracy

of schedules, especially for programs consisting of repetitive projects (Amor (2002), Amor

and Teplitz (1993, 1998), Badiru (1995), Shtub (1991) and Shtub et al. (1996)).

As described in section 2, most research efforts in literature focus on the construction

industry where the project consists of repeating activities along the units of a project. Even in

the formulation of Eqs.[1]-[7] we use l ijkk and consequently, we again assume that the project

consists of repetitive subparts. However, numerous examples outside the construction industry

can be described where the minimization of the resource idle time is of crucial importance,

without being confronted with repeating activities along the units. The following four

examples illustrate the possible generalization of the work continuity constraints to other

project environments:

Outsourcing activities / hired material. Project scheduling problems where a set of

activities has been outsourced, or that rely on external resources (subcontracting,

consultants, etc…) need to be scheduled with work continuity constraints. This means

that the set of activities can be divided into activity groups that have to be executed

within the smallest possible time-span in order to minimize the total cost of

outsourcing.

Programme scheduling with different stakeholders. In programmes that consist of

different projects for different stakeholders, each subproject can be seen as an

individual ‘activity group’ where work continuity can be of importance. Consequently,

it is beneficial to schedule the activities within an activity group within the smallest

possible time-span (within the precedence and resource constraints of the complete

programme) rather than simply resolving resource conflicts without taking the

different subprojects into account. In doing so, we minimize the project duration

towards each stakeholder and increase the satisfaction of the different stakeholders. As

an example, Vanhoucke and Demeulemeester (2003) discussed a capacity expansion

project at a Flemish water production company where different stakeholders are

12

involved. The project consists of different subprojects that are all crucial for the

realization of the complete project. Some subprojects, however, can be considered as

an individual project since they have immediate repercussions to some stakeholders.

The schedule is constructed in a way that subprojects are scheduled within the smallest

possible time-span in order to satisfy the individual stakeholders. This can be done by

minimizing work continuity constraints within each subproject.

Learning effects in projects. Learning effects between activity groups in projects

result in reduced activity durations and costs, and consequently reduced overall project

duration. In order to fully exploit these advantages of learning effects between activity

groups, it is beneficial to minimize the total duration of each individual activity group

(work continuity). Indeed, learning effects occur whenever completing an activity

group before another one. By minimizing the work continuity per group, the different

activity groups can be scheduled one after the other (rather than ‘mixing’ the activities

between groups within the precedence and resource constraints of project), leading to a

maximal effect of learning.

Project with time-critical subprojects. In projects, where only a subpart is time-

critical, work continuity constraints can be important for scheduling the time-critical

sub-network. As an example, we refer to a maintenance project in a luggage handling

system at an airport. These projects typically have a small project duration (about 3

weeks), and time is the main objective in the project scheduling phase. However, only

a subpart of the project is time critical, i.e. the part which involves a shutdown of a

part of the luggage handling line, which involves a penalty cost when exceeding the

negotiated shut-downtime. Consequently, the activities which involve a shutdown of

the luggage line can be seen as an activity group where work continuity is the main

issue.

The problem formulation represented by Eqs. [1]-[7] is to schedule all project

activities with minimal resource idle time, without violating a given project deadline.

However, Hegazy and Wassef (2001) and Selinger (1980) argue that minimizing work

continuity as such is not the target since adding work interruption in the schedule can be

beneficial. Hegazy and Wassef (2001) present a cost optimization model in order to minimize

13

total construction costs comprising direct cost, indirect cost, interruption cost as well as

incentives and liquidated damages. They use a genetic algorithm approach to consider project

deadline, crew synchronization and resource constraints simultaneously. They argue that

adding work interruption can be beneficial to the total project duration by allowing earlier

units of activities to start earlier than in the schedule with minimal resource idle time. Inspired

by these observations, we developed an algorithm which search for the complete trade-off

profile between project duration and resource idle time. To that purpose, we use a horizon-

varying approach which involves the iterative optimal solution for Eqs. [1]-[7] over the

feasible project durations in the interval bounded from below (the minimal project duration)

and from above (the maximal project duration). The minimal project duration corresponds to

the critical path length while the maximal project duration corresponds to a schedule with

minimal resource idle time. This means that a further increase in this project duration will not

lead to an improvement of the resource idle time. In the next section, we discuss a recursive

search algorithm to solve the problem given by Eqs.[1]-[7] (i.e. with a given fixed deadline).

In section 4.4, we embed this procedure into our horizon-varying approach in order to find the

complete trade-off profile between resource idle time and total project duration.

4 THE ALGORITHM

The proposed algorithm to minimize the resource idle time of problem [1]-[7] consists

of three steps: an activity labeling step, the construction of a search tree and the recursive

search in this tree. This algorithm is a modified version of the recursive search algorithm

proposed by Vanhoucke et al. (2001) in order to solve a totally different problem (the so-

called max-npv problem).

4.1 Step one. Activity labeling to simulate attraction

The procedure starts with assigning a label to each activity at each unit in the

following way: each activity of the project network receives a label with no value (0) except

for non-dummy activities at the first and the last unit. These activities get a negative label (-1)

at the first unit and a positive label (+1) at the last unit, as follows:

14

Label (0, 1) = Label (n + 1, K) = 0
Do for i = 1, …, n

Label (i, 1) = -1
Label (i, K) = 1
Label (i, k) = 0 for k = 2, …, K - 1

The purpose of this simple labeling mechanism is to simulate attraction between

activities in order to minimize resource idle time. Indeed, if we simulate attraction between

similar activities i at the first (1) and last unit (K), we force the schedule to minimize the time

distance siK – si1 between these activities. As mentioned before, the starting times of all

intermediate activities (i.e. sik with k = 2, …, K – 1) are irrelevant for the work continuity

calculations since they have no influence on the total resource idle time of this activity over

all units. Similarly, Suhail and Neale (1994) illustrate in their LOB calculations that it is only

necessary to show only the activities at the first and the last unit.

4.2 Step two. Build a search tree

It has been mentioned before that the complete CPM network has a ladder-like

appearance, due to the repeating character of the activities between the units. For the sake of

simplicity, we rename all activities in the sequel of this paper. In doing so, we can transform

the repetitive network into a CPM network where precedence relations exist between

activities at the same unit level or between successive levels. As an example, dummy activity

0 at level 1 will be activity 0 in the new network, activity 1 at unit 1 will be activity 1, activity

1 at level 2 will be activity n + 1 and so on. In a similar way, we modify the subscripts of the

symbols sik and l ijkl to '
'is and '

'' jil . Consequently, ' '' jil can be used to denote a time-lag between

activities at the same unit level (i.e. l ijkk) or between units (i.e. l iikk+1).

Note that we have used n to denote the number of non-dummy activities at each unit

(i.e. n = |N|), K to denote the number of repetitive units of the project and A to denote the set

of precedence relations between the activities at each unit level. The new network containing

all repetitive units has n’ activities and |A’| precedence relations, for which n’ = |N’| = K * n +

2 and |A’| = K * |A| + n * (K – 1) + 2.

In this step, we create an earliest start schedule by simply scheduling all the activities

as soon as possible within the precedence constraints. On top of that, we construct a spanning

tree that forms the basis of our recursive search of step 3. The latter has been investigated by

Grinold (1972), who has shown that the search for an optimal schedule for the payment

scheduling problem can be restricted to feasible trees in the project graph.

15

Using bool as a boolean variable used in the while test, ST to denote the spanning tree and CA

to denote the set of considered activities, the pseudocode to build the spanning tree ST is as

follows:

BUILD SPANNING TREE

 Initialize CA = {0}, ST = ∅ and bool = true
 Set s’0 = 0 and s’i = -∞ | i = 1, …, n’
 While bool = true
 bool = false
 Do ∀(i, j) ∈ A’
 If s’i + l’ ij > s’j then bool = true and s’j = s’i + l’ ij
 While CA ≠ N
 Do ∀(i, j) ∈ A’
 If I ∈ CA and j ∉ CA and s’i + l’ ij = s’j then
 CA = CA ∪ { j}
 ST = ST ∪ (i,j)
Return

After this step, all activities are scheduled as soon as possible. Moreover, in the project

network, only a subset of precedence relations ST is highlighted such that they form a tree.

For more details, we refer the reader to Vanhoucke et al. (2000) in which four recursive

search procedures for the so-called max-npv problem are compared to test their efficiency.

4.3 Step three. Recursive search

In a third step the spanning tree is the subject of a recursive search (using the dummy

start activity 0 as the search base) in order to identify sets of activities (SA) that might be

shifted forward (away from time zero) to improve the work continuity of the repetitive

project. When a set of activities SA is found for which a forward shift leads to an

improvement of the work continuity, the algorithm computes an allowable displacement

interval and updates the spanning tree ST. The starting times of the activities of SA are

increased by the allowable displacement interval and the algorithm repeats the recursive

search. The allowable displacement interval vr*s* simply calculates the minimal distance over

which an activity r ∈ SA can be shifted until it connects with an activity s ∉ SA. If no further

shift can be accomplished, the algorithm stops and the starting times of the activities of the

project are reported.

This recursive search is similar to the recursive procedure proposed by Vanhoucke et

al. (2001) for the maximization of the net present value of an unconstrained project scheduling

16

problem. In this procedure, activities with a negative cash flow are scheduled as late as

possible while activities with a positive cash flows are scheduled as soon as possible. By

labeling our activities we simulate attraction between these activities since a negative label (-

1) is similar to a negative cash flows and consequently has to be scheduled as late as possible.

A positive label (+1) is linked with a positive cash flows which is forced to be scheduled as

soon as possible.

The pseudocode of the third step, in which the recursion step is repeated several times,

can be written as given below. The set CA denotes the set of already considered activities, ST

denotes the spanning tree, CL denotes the cumulative label values and vr*s* the allowable

displacement interval.

procedure Step 3: the recursive search method
CA = ∅
Do RECURSION(1) → SA’, CL’ (parameters returned by the recursive function)
Report the optimal starting times of the activities. STOP.

RECURSION(NEWNODE)
 Initialize SA = { newnode}, CL = Labelnewnode and CA = CA ∪ { newnode}
 Do ∀nodei | nodei ∉ CA and nodei succeeds newnode in the current tree CT:
 (remark that nodei can be on the same level k or on the following level than newnode)
 RECURSION(nodei) → SA’, CL’
 If CL’ ≥ 0 then
 Set SA = SA ∪ SA’ and CL = CL + CL’
 Else
 CT = CT \ (newnode, nodei)

 Compute }{min '''

'
'

'),(
** rsrs

SAs
SAr

Asr
sr lssv −−=

∉
∈

∈
and set ST = ST ∪ (r* ,s*)

 Do ∀j∈SA’: set '
js = '

js + vr*s*

 Go to Step 3: the recursive search method
 Do ∀nodei | nodei ∉ CA and nodei precedes newnode in the current tree CT:
 (remark that nodei can be on the same level k or on the previous level than newnode)
 RECURSION(nodei) → SA’, CL’
 Set SA = SA ∪ SA’ and CL = CL + CL’
Return

17

Note that the renumbering of all the activities of the repetitive project was just for the

sake of simplicity. As an example, the allowable shift interval }{min '''

'
'

'),(
** rsrs

SAs
SAr

Asr
sr lssv −−=

∉
∈

∈
 equals

}}{min},{minmin{ 11
1,...,1

),(
,...,1

** 1212

'
2

'
1

21

ikiikkik

Ni
Kk

kikkiiki

SAi
SAi

Aii
Kk

lk slsslsv −−−−= ++
∈∀

−=

∉
∈

∈
=

 in our previous notation used for

Eqs. [1]-[7]. In the next section, we embed the recursive search procedure in the horizon-

varying approach in order to look for the complete optimal profile between work continuity

and project duration.

4.4 Horizon-varying approach for the complete time/work continuity profile

The horizon-varying approach boils down to the initialization step (section 4.1) and an

iterative call to the recursive search procedure of sections 4.2 and 4.3. The heart of the

algorithm lies in the while loop of the pseudocode below. We start our search with a project

deadline δn+1 equal to the critical path length (denoted by cpl). In doing so, the algorithm

reports a schedule with minimal resource idle time (idle) and a corresponding project duration

Cmax which is smaller than or equal to the critical path length (i.e. the solution of Eqs. [1]-[7]

with δn+1 = cpl). The algorithm repeats its search with a project deadline δn+1 = δn+1 + 1 and,

again, reports on results for the resource idle time (idle) and Cmax ≤ δn+1. The algorithm

continues this way until it has found a schedule with a minimal value for the crew idle time

(denoted by min). At this point, it stops the horizon-varying approach since a further increase

in the project deadline will not lead to a decrease in resource idle time.

HORIZON-VARYING APPROACH

 Step 1: label activities
 Determine min
 Set δn+1 = cpl and idle = ∞
 While (idle > min)

 Step 2: Build the spanning tree
 Step 3: Recursive search with deadline δn+1 → (Cmax, idle)
 Store Cmax and idle
 δn+1 = δn+1 + 1

Return

Remark that the min-value depends on the type of generalized precedence relations of

the repetitive project. On the one hand, for a project with only minimal precedence relations

with time-lag of zero (cpm case) it is always possible to find a project deadline that results in a

18

schedule with an idle-value equal to zero. This means that, by allowing enough slack to the

activities due to a project deadline increase, activities can be scheduled such that crews can

work without idle time. Therefore, the horizon-varying approach starts from the critical path

length and continues until it has found a schedule without idle time (i.e. min = 0). For projects

with generalized precedence relations (i.e. both minimal and maximal precedence relation or

gpr), on the other hand, there is no such guarantee. Due to the nature of the precedence

relations, a schedule with zero resource idle time does often not exist. In order to determine

what the min-value is, we initially solve the recursive search with a project deadline δn+1 = ∞

to report the minimal idle time value (min). Similar to the cpm case, we then solve the

problem starting from the critical path length until we have found a schedule with that

minimal value for the resource idle time.

5 THREE ILLUSTRATIVE EXAMPLES

In this section, we illustrate the use of our algorithm on three problem examples. The

first example is taken from Harris and Ioannou (1998) to schedule a repetitive project to

minimize crew idle time. In this example, we solely rely on the recursive search to solve the

problem, without starting the horizon-varying approach. In a second example, we make use of

the horizon-varying approach to report the complete trade-off between project duration and

work continuity. A last example describes the scheduling of a real-life project that aims at the

construction of a tunnel at the Westerschelde in the Netherlands.

5.1 A six-unit repetitive project

In figure 1 we illustrate an activity-on-the-node project network for the activities in the

first unit, as published in Harris and Ioannou (1998). Each of these 6 activities have a

duration, denoted above the node and need to use a certain resource Ri, denoted below the

node. The solid lines are technological precedence relations between the activities. The

default value for each precedence relation is a finish-start relationship with a minimal time-lag

of zero (i.e. FSmin = 0), unless indicated otherwise. In this example, we imply a minimal time-

lag of 2 time units between activity 1 and 3 (indicated as a ‘lead time’ in Harris and Ioannou

(1998)). Note that our algorithm can also deal with maximal time-lags between activities.

Insert Figure 1 About Here

19

If figure 2, we display the complete network for a project with six repeating units, each

having the six discrete activities of figure 1. The dashed lines link similar activities from unit

to unit and are used to represent resource availability constraints. Note that n’ = K * n + 2 = 6

* 6 + 2 = 38 and |A’| = K * |A| + n * (K – 1) + 2 = 6 * 7 + 6 * 5 + 2 = 74. Since we assume

that the work to be done in units 3 and 4 for activity 1 is twice the work to be done in unit 1,

we have doubled the duration of activities 13 and 19. Moreover, we have added a minimal

time-lag of five between unit 3 and unit 4 (i.e. 5min
20,14 =FS). This planned interruption in

resource continuity is to meet some known or predicted circumstance. Harris and Ioannou

(1998) mention that the delivery of materials by a subcontractor’s truck is sufficient to

completing only three units, and consequently, a work break period is needed after unit 3.

Remark that this repetitive project does not have an activity 3 in unit 5, which is a

characteristic of an atypical project. To that purpose, we set the duration of activity 27 to zero.

Of course, we could also have deleted this activity from the network.

The algorithm starts with calculating the minimal value for the resource idle time (i.e.

min) by solving the recursive search procedure with a project deadline δn+1 = ∞. The reported

value idle = 5 with a total project duration of 30. Since this project duration equals the critical

path length, there is no need to start the while-loop of the horizon-varying approach. Indeed,

by increasing the project deadline δn+1 we will not be able to further decrease the idle time to a

value smaller than 5 (because of the precedence relation 5min
20,14 =FS). The starting times

reported by the algorithm are '
0s = s01 = 0, '

1s = s11 = 0, '
2s = s21= 6, '

3s = s31= 4, '
4s = s41= 11,

'
5s = s51 = 19, '

6s = s61 = 24, '
7s = s12 = 2, '

8s = s22 = 7, '
9s = s32 = 8, '

10s = s42 = 14, '
11s = s52 =

20, '
12s = s62 = 25, '

13s = s13 = 4, '
14s = s23 = 8, '

15s = s33 = 12, '
16s = s43 = 17, '

17s = s53 = 21, '
18s

= s63 = 26, '
19s = s14 = 8, '

20s = s24 = 14, '
21s = s34 = 16, '

22s = s44 = 20, '
23s = s54 = 22, '

24s = s64

= 27, '
25s = s15 = 12, '

26s = s25 = 15, '
27s = s35 = 20, '

28s = s45 = 23, '
29s = s55 = 23, '

30s = s65 =

28, '
31s = s16 = 14, '

32s = s26 = 16, '
33s = s36 = 20, '

34s = s46 = 26, '
35s = s56 = 24, '

36s = s66 = 29

and '
37s = s76 = 30.

Insert Figure 2 About Here

In figure 3, we show the RSM diagram based on these starting times, which is similar

to the diagram given by Harris and Ioannou (1998). The vertical axis shows the work to be

20

done in the different units while the horizontal axis denotes the time line. They refer to the

slope of each line as the unit production rate, i.e. the number of repetitive units that can be

accomplished by a resource during a unit of time. Consequently, it can be calculated as the

inverse of the duration of that activity at that unit. Total project duration equals 30 days and

the resource idle time amounts to 5 days (i.e. the work break between activity 14 and 20, i.e.

5min
20,14 =FS in our network of figure 2). The minimal time-lags between activities 1 and 3 at all

units (i.e. 2min
33,31

min
27,25

min
21,19

min
15,13

min
9,7

min
3,1 ====== FSFSFSFSFSFS) do not affect the resource idle

time. The line in bold is the so-called controlling sequence and determines the length of the

project duration.

Insert Figure 3 About Here

5.2 The horizon-varying approach

In this section, we illustrate the use of the horizon-varying approach on the project

example of figure 4. In this figure, we display the unit network with 10 non-dummy activities.

In table 1, we report the activity durations from unit 1 to unit 5. Remark that we assume that

crew productivity increases along the units, which denotes a learning effect of crews.

Insert Figure 4 & Table 1 About Here

In figure 5, we display the complete trade-off profile between the total project duration

and work continuity by means of the black bars. This is the result of our horizon-varying

approach starting from the critical path length cpl = 43 to a project duration of 55 with

minimal work discontinuity (min). Note that the minimal work discontinuity min equals zero

since only zero time-lags are involved (cpm-case). This trade-off profile can be used as a

decision tool to determine an optimal level of resource idle time in the schedule. By assigning

costs to both resource idle time and project duration, we can determine the optimal point in

the complete profile with an associated project duration and idle time level. In the sequel, we

use cr to denote the cost per unit resource idle time and cd to denote the cost per time unit that

has to be paid during each day of the project duration. Consequently, the total cost of a

schedule with total project duration Cmax and corresponding resource idle time (idle) equals ct

21

= cr * idle + cd * Cmax. In figure 5, we have reported the total cost ct by four lines depending

on the values for cr and cd.

Insert Figure 5 About Here

The optimal project duration and the corresponding level of idle time depend on both

the values for cr and cd. Each unit increase in the project duration involves an extra cost cd

while the total cost will be decreased by cr times the idle time reduction due to the project

duration increase. Consequently, a project duration increase is only beneficial as long as
r

d

c

c
 is

smaller than the (negative) slope of the crew idle time curve as displayed in figure 5. As an

example, figure 5 shows three values for the slope, i.e. 4 between 43 and 45, 3 between 45 and

49, 2 from 49 onwards. Consequently, 4 different solutions can be optimal, depending on the

cost values cd and cr:

•
r

d

c

c
> 4: It is never beneficial to increase the project duration, and the optimal

solution equals the critical path length 43. In figure 5, we have used cd =

63 and cr = 14 and the total cost curve (Cost 1) has its lowest point at

project duration 43

• 3 <
r

d

c

c
 ≤ 4: It is beneficial to increase the project duration up to 45. This is displayed

by the curve labelled “Cost 2” with cd = 63 and cr = 18.

• 2 <
r

d

c

c
 ≤ 3: It is beneficial to increase the project duration up to 49. This is displayed

by the curve labelled “Cost 3” with cd = 62.5 and cr = 25.

•
r

d

c

c
 ≤ 2: A maximal increase in the project duration leads to the lowest cost. This

is displayed by the curve labelled “Cost 4” with cd = 57 and cr = 38 with

a minimal cost for a project duration of 55.

22

As a summary, the optimal project duration always coincides with a breakpoint in the

trade-off curve between idle time and project duration. In section 6.1, we will show that this

optimal point can be found immediately, without enumerating this complete trade-off curve.

5.3 The Westerschelde Tunnel

The Westerschelde Tunnel project is a huge project with a groundbreaking boring

technique at the Netherlands. This tunnel provides a fixed link between Zeeuwsch-Vlaanderen

and Zuid-Beveland, both situated in the Netherlands. It is a bored tunnel with a length of 6.6

kilometres. There are two tunnel tubes and in each tube, there are two road lanes. A detailed

description of this project can be found in Vanhoucke and Van Osselaer (2004) or on

http://www.westerscheldetunnel.nl.

The project under study involves the construction of the transverse links which connect the

two tunnel tubes every 250 metres, resulting in 26 links along the tunnel. Therefore, this project can be

represented as a unit network, which will be repeated for 26 times. These connections serve as an

emergency exit and account for 10% of the construction budget. Construction is done by means of a

freezing technique in order to guarantee watertight transverse links between the tubes. The

Westerschelde Tunnel is the first time for the freezing technique to be used on such a large scale.

During the scheduling phase, we analyzed the idle time of two types of resources by

comparing two schedules: the earliest start schedule (ESS, no minimization of resource idle

time) and the work continuity schedule (WCS, minimization of resource idle time). The two

types of resources are the crews that pass along the 26 units and large freezing machines that

are used for the freezing activities at each unit.

The ESS clearly results in a lot of resource idle time, both for the freezing machine

(within each unit) and for the crews (along the units). The idle time of crews, on the one hand,

results from time-lags between the finishing of work at one unit and the start at the next unit.

The idle time of the freezing machine, on the other hand, appears within units, due to the

earliest starting time of all activities. As an example, the idle time between units 4 and 5 of

crew 2 and the idle time of the freezing machine at unit 5 has been indicated at figure 6. The

total crew idle time in the ESS schedule amount to 165 days while the total freezing idle time

over all units is 343 days. The total scheduled project duration of the transverse link

subproject equals 380 days.

Insert Figure 6 About Here

23

Although the idle time for both the crews and the freezing machines is extremely

important, it is completely ignored by the ESS. The costs of the crew are generally as follows:

An ordinary employee has a cost of – on the average - € 40/manhour while a specialist

receives – on the average - € 60/manhour. Consequently, the average cost of one man-hour

amounts to € 50. Each crew consists of 3 people that work for 8 hours/day, resulting in a total

cost of 50 * 3 * 8 = € 1,200 per day. The efficient use of large freezing machine during the

construction of the tunnel is also crucial since the company has to pay € 3,000 (cr) for every

day that this machine is in operation. Therefore, a hammock activity between two activities

was added at every unit in the original ESS in order to indicate that all the work in between

these activities was performed at a temperature below zero. Consequently, this hammock

activity covers a chain of activities that have to be executed at a low temperature. The

duration of this hammock activity is variable and equals the total length between the start of

the end activity and the start activity of this chain. The ESS, however, does not minimize the

duration of the hammock activity in any way.

Taking these cost figures into account, we derive the following outline of costs for the

ESS. The crew idle time takes 165 days, resulting in 165 * € 1,200 = € 198,000 while the cost

of the idle time of all the freezing machines equals 343 days * € 3,000 = € 1,029,000. The

WCS minimizes the resource idle time and results in the following outline of costs. The crew

idle time cost amounts to 107 days * € 1,200 = € 128,400 and the idle time of all the freezing

machines has a cost of 5 days * € 3,000 = € 15,000. The difference in idle time cost between

the two schedules amounts to € 1,083,600. For a detailed description of the project, we refer

the reader to Vanhoucke and Van Osselaer (2004).

6 COMPUTATIONAL RESULTS

In the previous section, we focused on the trade-off between resource idle time

minimization and project duration. In this section, the focus is on the efficiency of the

algorithmic approach of section 4. In order to test the efficiency of our horizon-varying

approach for scheduling repetitive projects, we have coded it in Visual C++ version 6.0 under

Windows NT and run it on a Toshiba personal computer with a Pentium IV, 2 GHz processor

using two different testsets. The first testset is the well-known PSPLIB testset (Kolisch and

Sprecher 1997), used to report computational results of our procedure and to show the ability

to solve large real-sized project scheduling problems. The second set is composed of instances

24

generated by RanGen (Demeulemeester et al. 2003) and is used to study the impact of

different parameters on the performance of the algorithm.

The generated network instances of both sets contain solely the unit networks (i.e.

networks for one unit level) and need to be extended in order to incorporate repetition of

activities. To that purpose, we extend the problem instances with repeating activities and

corresponding durations by means of two extra parameters: the number of repetitive units K

and the rate factor r f. The number of repetitive units K is used to denote the number of units in

the complete project and equals the number of times the unit network is copied along the

stages, resulting in the ladder-like appearance. We make use of a rate factor rf to generate the

durations of the repeating activities at the various levels. The rate factor will be used as

follows: 1* −= ikfik drd . Consequently, a rate factor r f = 1 means that all activities have the

same durations along the units. A r f < 1 will be used to incorporate learning effects of crews

along the units while r f > 1 denotes an increase of the activity duration along the units. This

can occur when work becomes more complex when the unit level increases.

The PSPLIB dataset contains 480 instances for the 30, 60 and 90 activity networks and

600 instances for the 120 activity networks. Each network has been extended to 5 units and

the rate factor has been chosen randomly. Consequently, the total number of problem

instances equals 2,040. The results of this first test set are reported in section 5.1. In order to

test the impact of different parameters on the effectiveness and efficiency of the procedure, we

have constructed the second dataset as follows: Each activity-on-the-node instance contains

30 activities and has been generated with the following settings. The order-strength OS

(Mastor, 1970) is set at 0.25, 0.50 or 0.75 and is defined as the number of precedence relations

(including the transitive ones) divided by the theoretical maximum of number of precedence

relations. The number of repetitive units K is set at 5, 10, 15 or 20 and the rate factor r f is set

at 0.8, 0.9, 1.0, 1.1, 1.2 or random. Using 10 instances for each problem class, we obtain a

problem set with 720 test instances. The results of this second dataset are reported in section

5.2.

6.1 PSPLIB instances

Table 2 displays the results for the horizon-varying approach on the PSPLIB testset.

The table contains information about the CPU time and the number of runs. The number of

runs equals the number of iterative call to the recursive search procedure (i.e. the number of

repetitions of the while loop of section 4.4) and equals the number of trade-off points on the

25

complete duration/idle time curve between the minimal and maximal project duration.

Consequently, the row with the label “average CPU/Run” displays the average CPU time for

solving the problem with a given deadline. The column labelled “overall” displays the

information for the complete PSPLIB set, while the remaining columns distinguish between

the 4 testsets with 30, 60, 90 and 120 activities.

Insert Table 2 About Here

The results illustrate the positive effect of the number of activities on the problem

complexity. Nevertheless, projects with up to 120 activities and 5 units (i.e. a network with

602 activities) can be scheduled in less than 5 seconds. The results also indicate the positive

effect of the number of activities on the number of runs. Indeed, more activities result in a

larger time window between the critical path length and the maximal project duration and,

consequently, more runs are needed. The CPU-time per run, however, remains very low, even

for projects with a large number of activities.

In section 4.1 we used a labelling step to simulate attraction between activities at the

first and last unit. In doing so, we minimized idle time between these units. The value of the

labels, which function as a weight of attraction, were chosen to be -1 at the first unit and +1 at

the last unit. The values of all other labels, including the labels for the single start dummy and

the single end dummy were chosen to be zero. If, however, there is cost information available

about the project duration (cd) and idle time of resources (cr), the values cannot be chosen

equally. Instead, the trade-off between resource idle time and project duration depends on

these cost values and therefore, the label values need to be chosen accordingly.

To that purpose, we replace the unit weights of each activity by the resource idle time

cost cr. (i.e. - cr at the first unit and cr at the last unit). Moreover, we assign a negative label to

the single start dummy activity with weight -cd and a positive label to the single end dummy

with weight cd. In doing so, the project duration is considered as it were a resource with idle

time cost equal to cd. Consequently, we implicitly embed the trade-off between idle time and

project duration by assigning the appropriate weights to the labels. Depending on the value of

r

d

c

c
, the optimal project duration that results in a minimal total cost will be found without

enumerating the complete horizon. In section 5.2, we showed that this optimal point always

26

coincides with a breakpoint in the trade-off curve between idle time and project duration. The

column “average CPU/Run” of table 2 illustrates that this can be done in a very efficient way.

6.2 RanGen instances

In table 3 we report on the computational results for the horizon-varying procedure on

the RanGen instances for the different settings of the number of units K, the rate factor and the

order strength OS. Again, we display information about the CPU-time (in seconds), the

number of runs in the horizon-varying approach, the CPU-time per run and the average

number of iterations. The latter equals the average number of times the recursion has been

recalled within the recursive search method (step 3). Consequently, it displays the number of

times an allowable displacement interval has been calculated in order to shift a set of activities

further in time.

The row labeled ‘overall’ gives the average results over all 720 instances and

illustrates that our procedure is very efficient. Our procedure needs, on the average, 0.049

seconds to schedule a repetitive project with a given deadline. The number of iterations

amounts to – on the average – 168,609, with peaks to more than 770,000 for project with 20

units. This illustrates that the recursive search method, which is the body of the algorithm, is

very efficient. The remaining rows show more detailed results.

The row labeled ‘order strength’ shows that a larger value for the OS results in a more

complex problem to solve. These results are in line with previous similar research in literature

and show that the more dense the network, the more recursion steps are needed and hence, the

more difficult the problem (Vanhoucke et al. (2001), De Reyck and Herroelen (1998)). Note

that the OS-values are only valid on the unit network level. Due to the incorporation of

repetitive units, the OS of the complete CPM network will have another, unknown value.

The row labeled ‘number of units’ clearly shows a positive correlation between the

number of units and the problem complexity. Clearly, this stems from the increasing number

of activities due to an increasing number of units. Indeed, a repetitive project with 30 unit

activities and 20 units contains 30 * 25 + 2 = 602 activities that are subject to the horizon-

varying approach. Notice that the total CPU-time denotes 30.920 seconds and repeats the

recursive search – on the average – 416.167 times. Consequently, even for problem types with

602 activities in total, the CPU-time only accounts for 0.074 seconds per run.

The row labeled ‘rate factor’ shows the influence of the durations of activities along

the units on the problem complexity. The results show a positive correlation between the rate

27

factor and the computational effort to solve the problem. This illustrates that learning effects,

which is translated in decreasing activity durations, have a positive effect on the problem

complexity. The main reason is that the larger the rate factor, the larger the number of

combinations in the complete trade-off profile and, consequently, the larger the number of

recursive calls in the horizon-varying approach. However, we detect a similar relation for the

average CPU-time per run, although average CPU-times are very low.

Insert Table 3 About Here

In order to test our algorithm for projects in which generalized precedence relations

are represented, we have extended the test instances with minimal and maximal time-lags and

reported on computational results. The efficiency of our horizon-varying procedure shows,

however, similar results as found in table 3. Therefore, we do not report the separate results.

7 CONCLUSIONS AND FUTURE RESEARCH

In this paper, we provided a literature summary of project scheduling problem with

repeating activities and stressed the importance of so-called work continuity constraints. We

have presented an algorithm in order to detect the complete trade-off profile between work

continuity and the project deadline of repetitive projects. To that purpose, we have embedded

a recursive search procedure into a horizon-varying approach that solves the problem

iteratively between two extreme deadlines. The shortest deadline corresponds with a large

value of resource idle time while the longest deadline corresponds with a schedule with

minimal resource idle time.

The consequences of work continuity constraints in projects have been illustrated by

means of three project examples. We have shown that the incorporation of work continuity

constraints may involve a trade-off between resource idle time minimization and project

duration. Therefore, a careful analysis needs to be made, based on cost figures, to determine

the optimal level of resource idle time and total project duration.

The efficiency of the algorithm has been tested on a PC and the results obtained are

encouraging. Even repetitive project with up to 30 unit activities and 20 repetitive units can be

solved within 0.07 seconds per deadline run. Due to the large number of possibilities in the

complete trade-off profile between the project duration and resource idle time, the CPU-times

can increase to – on the average – 30 seconds for these projects. Clearly, the number of

28

activities, the order strength and the number of units have a negative effect on the efficiency

of the procedure. Still, the procedure can solve large-sized problems in an efficient way. The

results reveal a positive correlation between the rate factor and problem complexity.

In our future research, we will extend this problem type with additional features in

order to further tighten the gap between the project scheduling literature and real-life project

management. More precisely, we would like to investigate time/cost trade-offs in repetitive

projects with work continuity constraints. Moreover, we would like to investigate the presence

of extra renewable resource constraints that are not the subject of work continuity constraints

but that make the scheduling very complex because of limited availability. Finally, we would

like to continue with the complete trade-off profile between total project duration and work

continuity (see figure 5) and perform some sort of sensitivity analysis on the cost values.

29

REFERENCES

Al Sarraj, Z.M., 1990, “Formal development of line-of-balance”, Journal of Construction

Engineering and Management, 116 (4), 689-704

Amor, JP, 2002, “Scheduling programs with repetitive projects using composite learning

curve approximations”, Project Management Journal, 33 (2), 16-29

Amor, JP and Teplitz, CJ, 1993, Improving CPM's accuracy using learning curves, Project

Management Journal, 24 (4), 15-19.

Amor, JP and Teplitz, CJ, 1998, An efficient approximation procedure for project composite

learning curves, Project Management Journal, 29 (3), 28-42.

Ashley, D.B., 1980, “Simulation of repetitive unit construction”, Journal of the Construction

Division, 106 (CO2), 185-194.

Badiru, A.B., 1995, Incorporating learning curve effects into critical resource diagramming",

Project Management Journal, 2 (2), 38-45.

Barrie, D.S. and Paulson, B.C. Jr., 1978, Professional construction management, McGraw-

Hill Inc., New York, pp. 232-233.

Bartusch, M., Möhring, R.H. and Radermacher, F.J., 1988, “Scheduling project networks with

resource constraints and time windows”, Annals of Operations Research, 16, 201-240.

Birrell, G.E., 1980, “Construction planning – beyond the critical path”, Journal of the

Construction Division, 106 (CO3), 389-407.

Callahan, M.T., Quackenbush, D.G. and Rowings, J.E., 1992, “Construction Project

Scheduling”, McGraw-Hill, New York, NY.

Carr, R.I. and Meyer, W.L., 1974, “Planning construction of repetitive building units”, Journal

of the Construction Division, 100 (3), 403-412.

Chrzanowski, E.N. and Johnston, D.W., 1986, “Application of linear scheduling”, Journal of

Construction Engineering and Management, 112 (4), 476-491

30

De Boer, R., 1998, “Resource-constrained multi-project management – A hierarchical

decision support system”, PhD dissertation, Institute for Business Engineering and

Technology Application, The Netherlands.

Demeulemeester, E., Vanhoucke, M. and Herroelen, W., 2003, “A random network generator

for activity-on-the-node networks”, Journal of Scheduling, 6, 13-34.

De Reyck, B. and Herroelen, W., 1998, “An optimal procedure for the resource-constrained

project scheduling problem with discounted cash flows and generalized precedence relations”,

Computers and Operations Research, 25, 1-17.

Dressler, J., 1980, “Construction management in West Germany”, Journal of the Construction

Division, 106 (4), 447-487.

El-Rayes, K., 2001, “Object-oriented model for repetitive construction scheduling”, Journal of

Construction Engineering and Management, 127 (3), 199-205

El-Rayes, K. and Moselhi, O., 1998, “Resource-driven scheduling of repetitive activities”,

Construction Management and Economics, 16, 433-446.

Gong, D., 1997, “Optimization of float use in risk analysis-based network scheduling”,

International Journal of Project Management, 15 (3), 187-192.

Gorman, J.E., 1972, “How to get visual impact on planning diagrams”, Roads and streets, 115

(8), 74-75

Goto, E., Joko, T., Fujisawa, K., Katoh, N. and Furusaka, S., 2000, “Maximizing Net Present

Value for Generalized Resource Constrained Project Scheduling Problem”, Nomura Research

Institute, Japan.

Grinold, R.C., 1972, “The payment scheduling problem”, Naval Research Logistics Quarterly,

19, 123-136.

Harris, F.C. and Evans, J.B., 1977, “Road construction – simulation game for site managers”,

Journal of the Construction Division, 103 (3), 405-414.

Harris, R.B. and Ioannou, P.G., 1998, “Scheduling projects with repeating activities”, Journal

of Construction Engineering and Management, 124 (4), 269-278

31

Harmelink, D.J., 2001, “Linear Scheduling Model: Float Characteristics”, Journal of

Construction Engineering and Management, 127 (4), 255-260

Hegazy, T. and Wassef, N., 2001, “Cost optimization in projects with repetitive nonserial

activities”, Journal of Construction Engineering and Management, 127 (3), 183-191

Johnston, D.W., 1981, “Linear scheduling method for highway construction”, Journal of the

Construction Division, 107 (2), 241-261.

Kang, L.S., Park, I.C. and Lee, B.H., 2001, “Optimal Schedule Planning for Multiple,

Repetitive Construction Process”, Journal of Construction Engineering and Management, 127

(5), 382-390

Mastor, A.A., 1970, “An experimental and comparative evaluation of production line

balancing techniques”, Management Science, 16, 728-746.

Mattila, K.G. and Abraham, D.M., 1998, “Resource leveling of linear schedules using integer

linear programming”, Journal of Construction Engineering and Management, 124 (3), 232-

244.

Moselhi, O. and El-Rayes, K., 1993, “Scheduling of repetitive projects with cost

optimization”, Journal of Construction Engineering and Management, 119 (4), 681-697.

O’Brein, J.J., 1975, “VPM scheduling for high-rise buildings”, Journal of the Construction

Division, 101 (4), 895-905.

O’Brein, J.J., Kreitzberg, F.C. and Mikes, W.F., 1985, “Network scheduling variations for

repetitive work”, Journal of Construction Engineering and Management, 111 (2), 105-116.

Peer, S., 1974, “Network analysis and construction planning”, Journal of the Construction

Division, 100 (3), 203-210.

Reda, R.M., 1990, “RPM: repetitive project modeling”, Journal of Construction Engineering

and Management, 116 (2), 316-330.

Rowings, J.E. and Harmelink, D.J., 1993, “A multi-project scheduling procedure for

transportation projects”, Final Report Part 1, Iowa Department of Transportation, Ames, Iowa.

32

Rowings, J.E. and Harmelink, D.J., 1994, “A multi-project scheduling procedure for

transportation projects”, Final Report Part 2, Iowa Department of Transportation, Ames, Iowa.

Russell, A.D. and Casselton, W.F., 1988, “Extensions to linear scheduling optimization”,

Journal of Construction Engineering and Management, 114 (1), 36-52

Russell, A.D. and Wong, W.C.M., 1993, “New generation of planning structures”, Journal of

the Construction Engineering, 119 (2), 196-214.

Shoderbek, P.P. and Digman, L.A., 1967, “Third generation PERT/LOB”, Harvard Business

Review, 45 (5), 100-110.

Shtub, A., 1991, Scheduling of programs with repetitive projects, Project Management

Journal, 22 (4), 49-53.

Shtub, A., LeBlanc, L.J. and Cai, Z., 1996, “Scheduling programs with repetitive projects: a

comparison of a simulated annealing, a genetic and a pair-wise swap algorithm”, European

Journal of Operational Research, 88, 124-138.

Selinger, S., 1980, “Construction planning for linear projects”, Journal of the Construction

Division, 106 (CO2), 195-205

Stradal, O. and Cacha, J., 1982, “Time space scheduling method”, Journal of the Construction

Division, 108 (3), 445-457.

Suhail, S.A. and Neale, R.H., 1994, “CPL/LOB: new methodology to integrate CPM and line

of balance”, Journal of Construction Engineering and Management, 120 (3), 667-684.

Thabet, W.Y. and Beliveau, Y.J., 1994, “HVLS: horizontal and vertical logic scheduling for

multistorey projects”, Journal of Construction Engineering and Management, 120 (4), 875-

892.

Vanhoucke, M. and Demeulemeester, E., 2003, “The Application of Project Scheduling

Techniques in a Real-Life Environment”, Project Management Journal, 34 (1), 30-42.

Vanhoucke, M. and Van Osselaer, K., 2004, “Work continuity in a real-life schedule: the

Westerscheldetunnel”, working paper Ghent University.

33

Vanhoucke, M., Demeulemeester, E. and Herroelen, W., 2001, “On maximizing the net

present value of a project under renewable resource constraints”, Management Science, Vol.

47, 1113-1121.

Vanhoucke, M., Demeulemeester, E. and Herroelen, W., 2000, “A validation of procedures

for maximizing the net present value of a project”, Working paper 0030, Departement

Toegepaste Economische Wetenschappen, K.U.Leuven, 18 pp.

Whiteman, W.E. and Irwig, H.G., 1988, “Disturbance scheduling technique for managing

renovation work”, Journal of Construction Engineering and Management, 114 (2), 191-213.

Yamin, R.A. and Harmelink, D.J., 2001, “Comparison of linear scheduling method (LSM)

and critical path method (CPM)”, Journal of Construction Engineering and Management, 127

(5), 374-381.

34

FIGURE 1

An example project with 6 repeating activities

1

2

 R1

2

1

 R2

3

4

 R3

 6

1

 R6

4

3

 R4

5

1

 R5

FSmin =
2

35

FIGURE 2

A repetitive project network of figure 1 with 6 units

FSmin =
5

Unit
1

Unit
2

Unit
3

Unit
4

Unit
5

7
2

8
1

9
4

12
1

10
3

11
1

FSmin =

1
2

 R1

2
1

 R2

3
4

 R3

 6
1

 R6

4
3

 R4

5
1

 R5
FSmin =

0
0

 0

18
1

13
4

14
1

15
4

16
3

17
1

FSmin =

24
1

19
4

20
1

21
4

22
3

23
1

FSmin =

30
1

25
2

26
1

27
0

28
3

29
1

FSmin =

36
1

31
2

32
1

33
4

34
3

35
1

FSmin =

37
0

 0

Unit
6

36

FIGURE 3

RSM diagram for a six units project of figure 2

37

FIGURE 4

An example project with 10 repeating activities

S
0

 0

1
8

 R1

2
5

 R2

4
6

 R4

3
1

 R3

6
1

 R6

5
10

 R5

7
1

 R7

8
3

 R8
 E
 0

 0

10
4

 R10

 9
7

 R9

38

FIGURE 5

Trade-off between work continuity and project deadline and the corresponding total

cost

28

24

21

18

12
10

8
6

4

0
2

15

32

0

5

10

15

20

25

30

35

43 44 45 46 47 48 49 50 51 52 53 54 55

Project duration

3100

3200

3300

3400

3500

3600

3700Crew idle time

Cost 1

Cost 2

Cost 3

Cost 4

39

FIGURE 6

Gantt chart obtained by the ESS of the project

 ID Duration

1 0 days

2 17 days

3 116 days

4 9 days

5 51 days

6 25 days

7 8 days

8 1 day

9 9 days

10 2 days

11 12 days

12 2 days

13 0 days

14 11 days

15 112 days

16 12 days

17 33 days

18 1 day

19 12 days

20 1 day

21 8 days

22 2 days

23 8 days

24 7 days

25 0 days

26 14 days

27 91 days

28 10 days

29 41 days

1/1

crew1

crew2

crew3

crew4

crew5

1/1

crew1

crew2

crew3

crew4

crew5

1/1

crew1

crew2

Dec Jan Feb Mar Apr May
December January February March April May June

Idle time
freezer

Finishing time unit 1: 01/26/03
Start time unit 2: 01/29/03
Crew idle time

40

TABLE 1

Activity durations dik for the project example

Activity i
Unit k

1 2 3 4 5 6 7 8 9 10

 1 8 5 1 6 10 1 1 3 7 4
 2 7 4 1 5 8 1 1 2 6 3
 3 6 3 1 4 7 1 1 1 5 2
 4 5 2 1 3 6 1 1 1 4 1
 5 4 1 1 2 5 1 1 1 3 1

41

TABLE 2

Computational results for the horizon-varying approach on the PSPLIB instances

overall J 30 J 60 J 90 J 120
CPU time
Average 2.563 0.028 0.552 4.148 4.933
St.Dev. 2.804 0.018 0.301 2.090 2.679
Min 0.000 0.000 0.110 0.461 0.801
Max 22.703 0.121 2.033 12.298 22.703
Run
Average 72.211 35.150 72.590 82.452 93.363
St.Dev. 31.517 16.513 22.942 23.121 26.111
Min 1 1 21 25 34
Max 201 105 153 144 201
Average CPU/Run
Average 0.035 0.001 0.008 0.050 0.053

42

TABLE 3

Computational results for the horizon-varying approach on the RanGen instances

Average Iterations
Average St.Dev. Average St.Dev. CPU/Run Average

Overall 9.229 41.001 186.636 388.717 0.049 168,609
K
5 0.034 0.037 36.494 23.617 0.001 4,050
10 0.644 1.018 95.644 89.173 0.007 33,472
15 5.320 11.071 198.239 252.886 0.027 139,688
20 30.920 77.340 416.167 671.095 0.074 497,228
Rate Factor
Random 1.191 2.847 60.992 79.295 0.020 20,403
0.8 0.143 0.187 17.075 8.938 0.008 2,779
0.9 0.329 0.415 32.533 14.552 0.010 6,639
1.0 3.608 5.754 135.633 89.588 0.027 61,360
1.1 8.802 19.390 195.758 174.902 0.045 142,755
1.2 41.303 91.882 677.825 743.573 0.061 777,719
OS
0.25 2.467 8.725 118.767 274.615 0.021 56,442
0.50 7.292 27.418 201.875 416.491 0.036 158,564
0.75 17.929 64.061 239.267 445.029 0.075 290,822

CPU time Run

