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ABSTRACT 

We present a finite capacity production scheduling algorithm for an integrated steel company 

located in Belgium. This multiple-objective optimization model takes various case-specific 

constraints into account and consists of two steps. A machine assignment step determines the 

routing of an individual order through the network while a scheduling step makes a detailed 

timetable for each operation for all orders. 

 

The procedure has been tested on randomly generated data instances that reflect the 

characteristics of the steel company. We report promising computational results and illustrate 

the flexibility of the optimization model with respect to the various input parameters. 

 

Keywords. Master production scheduling; manufacturing planning and control; 

scheduling/sequencing. 
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1 INTRODUCTION 

Due to the often complex nature of production planning, various hierarchical 

production planning (HPP) approaches have been presented in literature to cope with 

interactions between product demand, production capacity, real-time data, etc… Each 

hierarchical level imposes various constraints and objectives to the lower level while the 

lower level returns feedback about the production progress. There exist different relations of 

aggregation and desaggregation between the hierarchical levels, based on product unit 

(product parts into products into product archetypes), production unit (machine into machine 

group into production step into factory unit), scope (short term, medium term, long term), 

time unit (minutes, days, weeks, months) and decision level (shop-floor workers, production 

management, top management) (Venkateswaran et al., 2004). Two essential levels in many 

HPP systems are the Master Production Schedule (MPS), which determines medium-long 

term production quantities for the different products, and the Material Requirements Planning 

(MRP) which translates the resulting master schedule into planned start times for the product 

components. Early endeavours approach all HPP-systems as infinite loading systems that 

were insufficiently integrated with the capacity requirements. The MPS was constructed by 

omitting all capacity constraints and the resulting capacity infeasibilities needed to be 

straightened in the MRP-schedule by ex post facto capacity planning techniques such as rough 

cut capacity planning (RCCP) and capacity requirements planning (CRP). However, most 

studies reveal that these techniques are highly insufficient, and production planners induce a 

lead time increase while incorporating capacity requirements, leading to inferior schedules 

with large work-in-process inventories and high costs (Sum and Hill, 1993; Fry et al., 1992). 

The need for integrating capacity limitations into planning algorithms raised in the 

early 1980s when many manufacturing companies started to use MRP as a primary planning 

tool (Rom et al., 2002). Billington et al. (1983) were the first to propose a finite capacity MRP 

scheduling problem in a multi-stage environment. The proposed linear programming 

formulation aims at computing the required production lead times in correspondence with the 

demands and the available capacity, thereby reducing in-process inventory compared to the 

usual practice in MRP. However, they did not provide any efficient heuristic procedure, 

capable to cope with large scale problem instances. Sum and Hill (1993) further defined the 

research area by also considering setup costs and tardiness costs and by including an order 

merging/breaking mechanism.  
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They presented a heuristic procedure in which a schedule generation scheme is 

incorporated, based on the resource-constrained project scheduling problem. Diaz and Laguna 

(1996) used a topology of multiple parallel work centres for the production of similar products 

and proposed an LP problem formulation for a finite capacity MRP focusing on minimising 

multiple cost components. They did not provide a heuristic procedure to solve real-life 

problems. They stressed the importance of already incorporating resource constraints at the 

MPS-level and proposed some methods to improve the RCCP. Taal and Wortmann (1997) 

were the first to embed capacity constraints in a flexible flow shop environment, and 

presented a priority rule to create a schedule in line with the planning objectives. Finally, Rom 

et al. (2002) introduced the capacity-constrained MRP system in a job shop environment. 

Their LP model formulation allows flexibility to change the objective function according to 

specific planning goals, but does not simultaneously optimise multiple objectives. 

In this paper, we present a finite capacity production scheduling algorithm for the 

integrated steel company Arcelor Gent (formerly known as Sidmar), located on the Ghent-

Terneuzen Canal, around 20 km from the centre of the city of Ghent (Belgium). Arcelor Gent 

yearly produces 5 million tonnes of flat steel strip for the automotive industry and for all kinds 

of high-quality applications such as domestic appliances, sanitary, heating, construction and 

furniture and handles every step of the production process, from the supply of raw materials to 

the coating of steel and the production of laser-welded blanks. With 5,500 employees, they are 

one of the largest employers in the region. They are part of Arcelor, one of the world´s largest 

steel companies. For more information, we refer to www.sidmar.be.  

Planning and scheduling problems in iron and steel production have not drawn as wide 

an attention of the operations management researchers as many other industries. However, the 

iron and steel industry is both capital and energy intensive, which makes the importance of 

effective planning and scheduling in this industry by no means less than that in other 

industries (Tang et al., 2001). Moreover, Lee et al. (1996) argue that tools are available to 

develop efficient algorithwms for the extremely difficult scheduling environment of steel and 

research in this area should be stimulated since the return on investment for software to 

support improved steel making productivity is very high. Most studies focus on sub-parts of 

the production process (Harjunkoski et al., 2001) and ignore interactions between these sub-

parts, although the objective of steel companies to reduce the lateness and lead-time of the 

orders increases the need for an integral approach of the problem. In our steel shop production 

system, we provide a solution approach for the complete production process, taking various 

constraints and objectives into account.  
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We restrict our procedure to a daily bucket system, where we only assign orders to 

machines on a daily basis without determining the exact production sequence of the orders on 

a particular day. Though we already incorporate sequence dependent setup costs at this 

aggregated level (see section 2.2), the exact sequence of orders within a daily bucket needs to 

be determined by shop floor decisions or process-specific algorithms and is outside the scope 

of this paper. 

The outline of the paper is as follows. Section 2 gives a problem formulation and 

defines the various constraints and problem objectives into detail. Section 3 presents our 

solution procedure to solve the problem under study. In section 4 we present extensive 

computational results and conclusions are given in section 5. 

 

2 PROBLEM FORMULATION 

2.1 Problem parameters and decision variables  

A steel shop environment is closely related to a flexible flow shop as it consists of 

several serial production steps, each consisting of several identical machines in parallel (Lee 

et al., 1996). The parallel machines may be clustered into machine groups (e.g. they are 

located at the same place and make use of the same storage facilities). A set of accepted 

production orders needs to be scheduled. The ordered coils can slightly differ from each other 

in terms of width, thickness, length, quality, etc. (Okano et al., 2004), resulting in a wide 

variety of product types. 

In the following, we briefly describe the various parameters and the decision variables 

in order to formulate the production scheduling problem. These parameters will be explained 

in detail and used throughout the remainder of the manuscript. 
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Parameters 

 

Steel-shop characteristics 

nrq Number of production steps (index q = 1, …, nrq)  

nrn  Number of machine groups (index n = 1, …, nrn) 

nrj Number of machines (index j = 1, …, nrj) 

NQ
qS  Set of machine groups of production step q 

JQ
qS  Set of machines of production step q 

JN
nS  Set of machines of machine group n 

 

Scheduling horizon 

nrk Number of days (index k = 1, …, nrk) 

nrm Number of weeks (index m = 1, …, nrm) 

 

Order characteristics 

nri Number of orders (index i = 1, …, nri) 

Each order can be characterised by: 

vi Volume of order i (in tons) 

ti Due date or delivery date of order i 

Q
iO  Set of production steps needed to produce order i ( Q

iO  ⊂ {1, …, nrq}) 

The orders can be aggregated in order groups or production flows, as follows: 

nrl Number of order groups (production flows) for the flow constraints (index l = 1, …, 

nrl) 

O
lF  Set of production orders that belong to production flow l  

flnm Pre-specified flow quantity (in tons) for order group l on machine group n during week 

m 
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Order routing network 

Durations: 

pij  Processing time of order i on machine j (in minutes) 

= function of order i, machine j and volume vi 

djj’  Intermediate duration for order i between machine j and machine j’ (in days) 

= transportation and minimal cooling down time 

cjk Capacity of machine j on day k (in minutes) 

Costs: 

aijj’  Assignment cost of order i (in €) if assigned to machines j and j’  

= sum of costs of transportation and cooling down 

ei Earliness unit cost for order i (in € per day) 

l i Lateness unit cost for order i (in € per day) 

uj Utilization cost of machine j (in € per minute deviation of 100% utilization) 

−
lnb  Lower flow penalty cost (scheduled production ≤ lnmf ) (in € per ton) 

+
lnb  Upper flow penalty cost (scheduled production exceeds lnmf ) (in € per ton) 

 

Decision variables 

 

A production schedule consists of an assignment of all operations for each order taking 

various constraints (section 2.2) and multiple objectives (section 2.3) into account. Hence, 

every operation of order i needs to be executed on a machine j on a particular day k, resulting 

in the decision variables as follows:  

 

xijk  = 1, if an operation of order i is assigned to machine j on day k 

 = 0, otherwise 

 

Note that we construct a production schedule where the daily machine capacity and 

processing times of the orders are expressed in minutes whereas the intermediate time 

between machines is expressed in days. Hence, for the production of steel, time spent for 

operations at the machinery lies far beyond the time needed to support intermediate 

manipulations such as transporting, heating or cooling down.  

Insert Figure 1 About Here 
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Figure 1(a) displays an example steel shop network with 4 production steps, 7 machine 

groups and 11 machines. Dummy machine 0 and dummy machine 12 (or in general nrj + 1) 

are used to represent the start and finishing time of an order. Figure 1(b) displays the order 

routing network of an example order for which the routing is limited to production steps 1, 2 

and 4. In order to process all operations of the order, the algorithm must select a single path 

from this network consisting of a sequence of machines. The production steps of a coil of steel 

consist of casting, hot rolling, pickling, and cold rolling. In order to give specific properties to 

the coil, extra operations such as annealing, skin passing, galvanizing, coating, recoiling or 

cutting can be performed. Each production step has many typical production constraints and 

solving a steel shop scheduling problem involves handling a large number of complicated 

chemistry-, geometrical- and scheduling rules. 

 

2.2 Problem constraints 

 

In this section, we discuss the four different types of technical restrictions (capacity, 

assignment, precedence and setup constraints) that the steel company incorporates in its 

production schedule. 

 

Capacity constraints: Each machine j has a limited capacity cjk expressed in minutes 

per day, which may not be exceeded by all assigned orders on that machine at day k. In order 

to avoid that this constraint leads to a structural under-use of the available machine capacity, 

we add the unused capacity ∆cjk-1 of the previous day to the capacity cjk. However, the 

capacity shift ∆cjk-1 is limited to a threshold value τ such that a temporal shortage of eligible 

orders at day k - 1 does not create unrealistic capacity at day k. The capacity constraints can be 

formulated as follows: 

1
1

−
=

∆+≤∑ jkjk

nri

i
ijkij ccxpt   j = 1, …, nrj and k = 1, …, nrk    [1] 

with  











−∆+=∆ ∑

=
− ijk

nri

i
ijjkjkjk xptccc

1
1,min τ         [2] 

In our production scheduling algorithm, we set τ  equal to 10 minutes. 
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Assignment constraints: In order to process all operations of an order, the algorithm 

must select a unique path from the order routing network consisting of a sequence of 

machines. Therefore, each operation of order i needs to be assigned to one machine j per 

production step q ∈ Q
iO , as follows:   

 

∑ ∑
∈ =

=
JQ
qSj

nrk

k
ijkx

1

1   i = 1, …, nri and ∀q ∈ Q
iO       [3] 

 

Precedence constraints: The precedence relations between operations of an order i 

are shown by the order routing network and define the relations between all machines j1 ∈ 

JQ
qS

1
 and j2 ∈ JQ

qS
2

 of two sub-sequent production steps q1 ∈ Q
iO  and q2 ∈ Q

iO  with a minimal 

time interval equal to the duration
21 jijd . Hence, for each couple (q1, q2) ∈ Q

iO  of two 

subsequent production steps in the routing of an order i, the algorithm incorporates the 

precedence relations as follows:  

 

( ) ∑∑
==

≤+
nrk

k
kijjij

nrk

k
kij kxdkx

11
2211

  i = 1, …, nri, j1 ∈ JQ
qS

1
 and j2 ∈ JQ

qS
2

    [4] 

 

Setup constraints: Our production scheduler assigns orders to machines on a daily 

basis and does not determine the exact sequence of the individual orders. The setup 

constraints take sequence-dependent setup costs or transition costs into account by imposing 

campaigns. Orders with similar characteristics will be grouped in production campaigns, 

which is a production run with specific start and end times in which coils of a particular type 

are processed continuously on a process line (Okano et al., 2004). As an example, it is 

beneficial to start a campaign of thin coils at the cold rolling mill when new rollers are 

installed, since the thicker coils can be rolled when rollers start to wear out. In our problem 

formulation, we cluster orders with low mutual setup costs for a particular machine and ensure 

that only order i of this campaign can be scheduled on machine j on day k and prevents the 

assignment of all other orders i’, as follows:  

0
'

' =∑
∀i

jkix            [5] 
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2.3 Problem objective function 

Previous research studies reveal that the multiple objectives that are used in the steel 

making industry are often very company-specific. Lee et al. (1996) focus on full capacity use 

to make the expensive machinery pay, raised the issue of allocating orders efficiently among 

parallel machines and suggested to group all orders for coils with similar processing 

properties in order to reduce setup costs. Okano et al. (2004) take a customer satisfaction point 

of view by minimising the lateness of the orders. Moreover, they consider various technical 

constraints by production campaigns. Wiers (2002) focuses on stock quantity reduction by 

means of lead time minimisation. Our production scheduler optimises a multiple objective 

function by minimising the total cost TC as a sum of five different cost functions: assignment 

cost CA, lateness cost CL, earliness cost CE, utilisation cost CU and production flow cost CF, 

i.e. FUELA CCCCCTC ++++= . 

 

Assignment cost: The total assignment cost is an immediate result of the selection of 

paths in the order routing networks. An assignment cost acijj’  is charged for each arc (j, j’ ) of 

the selected path of an order i, as follows: 

 

∑∑ ∑ ∑∑
= = += +==

=
nri

i

nrj

j

nrj

jj

nrk

kk
kij

nrk

k
ijkijj

A xxac
1 1 1' 1'

''
1

'C         [6] 

 

Lateness cost: The lateness cost penalises the production orders that finish later than 

the pre-negotiated due date ti, and equals the unit lateness cost l i times the number of days 

order i is late (or zero, if the order finishes earlier than ti). The algorithm determines the 

finishing day k of order i as the assignment of the order on the dummy end machine nrj + 1, 

and hence the lateness cost can be calculated as follows: 

 

∑ ∑
= =

+ −=
nri

i
i

nrk

k
knrjii

L tkxl
1 1

 1 ),0max(C         [7] 

 



12 
 

Earliness cost: The earliness cost incorporates the lead-time and stock level 

minimisation and states that orders should be started no earlier than necessary to finish within 

the pre-negotiated due date ti. Therefore, the algorithm calculated the latest possible starting 

time LSTi0 by means of simple backward calculations, starting from the end dummy machine 

nrj + 1. The earliness cost is equal to the unit earliness cost ei times the number of days the 

order i starts earlier than its LSTi0 (or zero, if the order starts after its LSTi0). 

 

∑ ∑
= =

−=
nri

i

nrk

k
kiii

E kxLSTe
1 1

00 ),0max(C         [8] 

 

Utilisation cost: The utilisation cost penalises each time unit (minute) a machine is 

idle. Hence, the algorithm measures the deviation between the daily machine capacity 

1−∆+ jkjk cc  and the capacity use ∑
=

nri

i
ijkij xp

1

 of the assigned orders, such that the total utilisation 

cost can be calculated as follows: 

 

∑∑ ∑
= = =

− 









−∆+=

nrj

j

nrk

k

nri

i
ijkijjkjkj

U xpccuC
1 1 1

1        [9] 

 

Production flow cost: The production of steel requires primary resources (i.e. 

machines) as well as secondary resources, such as colourings or chemical additives. An 

efficient stock management of these secondary resources leads to substantial cost reductions. 

Hence, the steel company clusters orders that use the same secondary resources at particular 

production steps in order groups or production flows. This allows the determination of a pre-

specified flow quantity flnm for order group l on machine group n during week m at the MPS 

level. Our production scheduler takes these flow constraints into account by penalizing 

deviations (either below (−lnb ) or above ( +
lnb )) between the scheduled order volumes and the 

pre-specified flow volumes. Thanks to these production flow quantities, the steel company 

can order the corresponding secondary resources on a just in time basis, avoiding excessive 

safety stocks.  
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The production flow cost can be modelled as follows: 

 

∑∑∑
= = =

+

−







<∆∆−

≥∆∆
=

nrl

l

nrn

n

nrm

m lnmlnlnm

lnmlnlnmF

fbf

fbf
C

1 1 1 0 if 

0 if 
        [10] 

 

where nrl has been previously defined as the number of production flows and flnm the pre-

specified flow quantity (in tons) for order group l on machine group n during week m. Note 

that we consider, without loss of generality, weekly buckets to describe the pre-specified 

production flow volumes. The flow deviation ∆Flnm for flow l at machine group n during 

week m can be calculated as  














−∆+=∆ ∑ ∑ ∑

∈ ∈ ∈O
l

JN
n mFi Sj Wk

ijki-lnmlnmlnm xvfff 1        [11] 

 

with Wm the set of days belonging to week m. 

 

3 SOLUTION APPROACH 

 

In this section, we describe our solution algorithm to solve the production scheduling 

problem under study. Our solution approach consists of two steps, taking the various 

constraints and objectives into account, as follows: 

 

Step 1. Machine assignment problem: each order is assigned to one machine for each 

production step of its routing (assignment constraint), resulting in the total assignment 

cost CA. 

 

Step 2. Scheduling problem: all operations of each order need to be scheduled on a 

particular day (given the assigned machines of step 1), taking the three remaining 

constraints (capacity constraints, precedence constraints, setup constraints) and the 

multiple objectives (lateness costs, earliness costs, utilisation costs and flow costs) into 

account. 
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Insert Figure 2 About Here 

Figure 2 displays a fictive example with two orders. In step 1, each order is assigned to 

a specific machine on its routing (path 3 – 6 – 10 for order 1 and path 2 – 8 – 10 for order 2). 

These assigned machine paths will be used as an input to solve the scheduling problem of step 

2. In figure 2, both orders start on day 2 and have been scheduled as soon as possible. In 

section 3.1, we discuss the scheduling problem (step 2) in detail. Section 3.2 elaborates on the 

machine assignment problem (step 1).  

 

3.1 Scheduling problem 

In order to schedule all orders in time, the algorithm solves a knapsack problem for 

each machine and for each day of the scheduling horizon. Hence, our schedule generation 

scheme (SGS) iterates over all machines and all days, and can be shown in pseudo-code, as 

follows: 

 

  For k:=1 to nrk 

   For j:=1 to nrj 

    Knapsack Problem (j,k) 

 

The knapsack problem determines for each machine and each day the set of eligible 

orders E
jkO  that are potential candidates to enter the knapsack (i.e. scheduled on machine j 

during day k). An order i is eligible on machine j on day k if the following constraints are 

satisfied: 

 

• Assignment constraints: an order can only be scheduled on a machine determined by 

the machine assignment problem of section 3.2, 

• Precedence constraints: an order can only be scheduled if the previous operation of 

that order has been scheduled earlier, taking the intermediate duration into account, 

• Setup constraints: an order can only be scheduled within the production campaign 

restrictions. 
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Hence, the knapsack problem boils down to the selection of orders to be scheduled on 

machine j of day k, satisfying the capacity constraints and optimizing the various costs factors 

of section 2.2. 

 

 max ∑
∈

+++=
E
jkOi

F
ijk

U
ijk

E
ijk

L
ijk CRCRCRCRTCR       [12] 

 subject to 

 ∑
∈

−∆+≤
E
jkOi

jkjkijkij ccxpt 1          [13] 

 

The objective function maximises the total cost reduction TCR when assigning order i 

to machine j on day k. Since the cost of scheduling that order depends on the schedule of all 

other orders, we need to estimate the total cost reduction TCR when assigning order i to 

machine j on day k, denoted by L
ijkCR  (estimated lateness cost reduction), EijkCR  (estimated 

earliness cost reduction), U
ijkCR  (estimated utilisation cost reduction) and F

ijkCR  (estimated 

production flow cost reduction). The determination of these estimates will be discussed in the 

remainder of this section. The constraint of equation [13] is equal to the capacity constraint of 

machine j on day k of equation [1]. The knapsack problem is proven to be an NP-complete 

problem (Hirschberg and Wong, 1976).  

Estimated lateness cost reduction: The lateness cost depends on the due date of 

order i and can only be determined when the last operation of order i has been scheduled. 

Hence, an estimate for the lateness cost reduction L
ijkCR  of assigning order i to machine j on 

day k is equal to the extra lateness cost we would obtain when postponing it to day k + 1. 

Hence, we need to rely on an estimate of the probability ijkP  as the chance that an order i will 

increase the lateness by one day if the order is not scheduled on day k. Consequently, the 

estimated lateness cost reduction is equal to iijk
L
ijk lPCR =  and is displayed in figure 3. 

 

 

 

 

 

 

 



16 
 

Insert Figure 3 About Here 

The probability ijkP  is assumed to be 100% when the scheduling day k is larger then or 

equal to the latest start time LSTij. This LSTij can be easily determined by means of 

straightforward backward calculations starting from the order due date ti. Moreover, we 

assume that this probability is a function of the remaining operations (denoted as the 

remaining production steps rps) of the order and a slack-per-operation parameter α. Therefore, 

we define a linear function such that the probability increases linearly from 0% to 100% 

between LSTij – α* rps ≤ k ≤ LSTij . Outside the interval [LSTij – α* rps, LSTij], the probability 

equals 0% (k ≤ LSTij – α* rps) or 100% (k ≥ LSTij). In our production scheduling algorithm, we 

set α equal to 1. 

Estimated earliness cost reduction: The earliness cost depends on the start of the 

first operation of order i and is measured as the deviation between the start of the first 

operation and the latest start time LSTi0 of this operation. Hence, the estimated earliness cost 

reduction can be calculated as follows: 

 





−
>≥

=
otherwise,

0iforif0 0

i

iE
ijk e

jLSTk
CR         [14] 

 

Estimated utilisation cost reduction: Each order i that enters the knapsack needs to be 

produced on machine j on day k, and hence, increases the utilisation by ptij minutes (and 

reduces the utilisation cost by uj per minute). Hence, the estimated utilisation cost reduction 

can be calculated as follows:  

 

ijj
U
ijk ptuCR =            [15] 

 

Estimated production flow cost reduction: Each order i of production flow l (i ∈ 

O
lF ) that enters the knapsack to be scheduled at machine j on day k will affect the production 

flow deviation lnmf∆  (see equation [11]) of machine group n (with j ∈ JN
nS ) during the week m 

(k ∈ Wm). 
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We define for each order i a density measure 
ij

iln
U
ijk

E
ijk

L
ijk

i pt

vbCRCRCR −+++
=δ  which 

measures the total estimated cost reduction per time unit (in minutes) if an order i enters the 

knapsack at machine j on day k. The last term states that the entrance of an eligible order i 

reduces the production flow cost by ilnvb−  and hence, assumes that the entrance of eligible 

order i results in a reduction of the flow deviation (there is a flow ‘under-production’) (note 

that the knapsack problem strives for a maximal knapsack density and hence, priority will be 

given to orders with a high value for the density measure). However, some orders can enter 

the knapsack resulting in an increase of flow deviation (in case of a flow ‘over-production’) 

and hence, an estimate for the production flow deviations needs to be calculated.  

 

We calculate an estimate of the flow deviation equations [11] for each order i (denoted 

by iEF∆ ) under the assumption that  

 

- The orders i’  of the same production flow l (i.e. i’  ∈ O
lF ) on machine j’  that have been 

scheduled by the algorithm on previous days k’ < k of the same week are already 

included.   

- All eligible orders i” of the same production flow l (i.e. i and i”  ∈ O
lF ) with a higher 

or equal density value of order i ( ii δδ ≥" ) will be scheduled (i.e. entering the 

knapsack) prior to scheduling order i, as  

 

∑∑ ∑ ∑
≥

∈∈ ∈
<
∈

−−∆+=∆

ii

O
l

O
l

JN
n m Fi

i

Fi Sj
kk
Wk

kjii-lnmlnmi vxvffEF

δδ "

"

"

' '
'
'

''''1        [16]

   

 

with (a) the pre-specified production flow volumes, (b) the production volume of all 

scheduled orders i’ and (c) the production volume of all orders i”  that will probably be 

scheduled prior to scheduling order i plus the production volume of order i. 

 

(a)       (b)                    (c)  
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The value of iEF∆  reveals whether or not scheduling order i on machine j on day k 

will lead to overproduction of production flow l. If iEF∆  ≥ 0, then scheduling order i will 

probably reduce the underproduction of flow l. If iEF∆  ≤ -vi, then scheduling order i will 

probably increase the overproduction of l. If -vi < iEF∆  <  0, then scheduling order i will 

probably change the underproduction of l to an overproduction. Hence, we rely on this flow 

deviation estimate to determine the production flow cost reduction F
ijkCR  as follows: 










∆+∆+

−=
+−

+

−

ilniiln

iln

iln

F
ijk

EFbEFvb

vb

vb

CR

)( 0- if

 if

0 if

<∆≤
−≤∆

≥∆

ii

ii

i

EFv

vEF

EF

      [17] 

 

Figure 4 illustrates the production flow reduction estimate based on an example 

project of our production scheduler with 9 eligible orders on the third day of a particular week 

with 3 pre-specified production flows for which OF1  = {1, 6, 8}, OF2  = {2, 3, 7} and OF3  = {4, 

5, 9}. The order volumes and density matrix of the orders are assumed to equal to (8, 7, 11, 

12, 9, 9, 6, 13, 8) and (1.10, 0.93, 0.90, 0.85, 0.80, 0.76, 0.67, 0.63, 0.57), respectively.  

Insert Figure 4 About Here 
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The black areas represent the production volume of all scheduled orders i’ on previous 

days of the week for each flow. The density measure serves as a priority estimate for each 

order to be selected in the knapsack (see figure 4), as follows: 

 

• Flow 1: 1 – 6 – 8: the entrance of all these orders leads to a decrease of the production 

flow deviation, and hence, the estimate of the flow deviation iEF∆  will be zero or 

positive.  

• Flow 2: 2 – 3 – 7: the entrance of order 2 leads to a decrease of the production flow 

deviation ( iEF∆  ≥ 0). The entrance of order 3 will change the underproduction of flow 

2 to an overproduction (-vi < iEF∆  <  0) while the entrance of order 7 will increase the 

production flow deviation iEF∆  ≤ -vi. 

• Flow 3: 4 – 5 – 9:  the entrance of all these orders leads to an increase of the 

production flow deviation, and hence, all estimates iEF∆  ≤ -vi. 

 

The above estimates of the flow deviation equations iEF∆  will be used to calculate the 

F
ijkCR  values (32, 14, -42, 120, -90, 36, -36, 52, -80) which will be used in the objective 

function of the knapsack problem. 

 

3.2 Machine assignment problem 

 

The basic machine assignment problem randomly selects for each order a single path 

from the order routing network consisting of a sequence of machines. However, the algorithm 

is able to control the machine assignment process by estimating cost factors in three various 

ways, as follows: 

Greedy assignment (based on assignment cost) (GA(A)): Each order will be 

assigned to the path with the lowest assignment cost using a shortest path algorithm of 

Dijkstra (1959). 

Greedy assignment (based on assignment, utilisation and production flow cost) 

(GA(AUF)): The orders will be assigned, one after another, to the path with the lowest total 

cost using the shortest path algorithm of Dijkstra (1959). The total cost is equal to the 

assignment cost (similar to the GA(A) approach) plus a penalty estimate for the utilisation and 

production flow cost.  
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The penalty costs of each arc (j, j’ ) are calculated based on the assignments of all 

previously assigned orders. To obtain utilisation and production flow estimations, we assume 

that these orders have been scheduled at their latest start time LSTij. 

 

- The utilisation penalty cost for arc (j, j’ ) of order i is equal to uj when the cumulative 

available capacity of machine j before LSTij has been reserved already completely by 

the previously assigned orders, and equals zero otherwise. 

- The production flow penalty cost for arc (j, j’ ) of order i equals +
lnb  when the 

cumulative pre-specified production flow quantities remaining has been reserved 

already completely by the previously assigned orders, and equals zero, otherwise. 

-  

Consequently, positive penalty factors for an arc (j, j’ ) give the shortest path algorithm 

an incentive to select another arc of another path in the order routing network for order i. 

Local search assignment (LSA): The local search procedure embeds the SGS of 

section 3.1 in a local search procedure in order to find high quality schedules. The procedure 

starts with an initial schedule, constructed by the GA(A) approach and the SGS procedure, 

and searches for improvements by iteratively changing the machine assignments of a single 

order i. The pseudo-code of the local search procedure can be displayed as follows: 

 

Procedure LSA() 

 Construct initial schedule 

 For k = 1 to nrk 

  For i = 1 to nri 

   For q = 1 to nrq 

    For j1 = first machine to last machine of JQ
qS  

     If kijx
1

= 1 

      For j2 = first machine to last machine of JQ
qS  

       change assignment of order i from j1 to j2 

       If “check constraint feasibility” then ∆costs = “phase 1 cost estimate” 

        If ∆costs < 0 then costs = SGS() 

         If costs < best found costs then replace best found schedule 

         Else change assignment of i again from j2 to j1. 
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The local search procedure iteratively searches for each day k whether a re-assignment 

of an order would lead to improvements. Therefore, the algorithm considers all possible re-

assignments of an order from machine j1 to machine j2 within a production step q, and checks 

the resulting constraint feasibility and the resulting cost changes, as follows:  

 

- Check constraint feasibility: this sub-routine checks whether all constraints are satisfied 

when re-assigning order i from machine j1 to machine j2 of the same production step q. 

- New cost estimation: The machine assignment change will lead to a new cost, that is 

estimated in two phases.  

-  

o Phase 1. quick and rough estimate: this cost estimate is a quick and rough 

estimate to evaluate whether the order re-assignment is a valuable alternative that 

needs further detailed analysis. The “phase 1 cost estimate” is equal to the change 

in the assignment cost plus the new utilisation and flow cost. For the latter two, 

the algorithm simply calculates the cost changes by ignoring the cost effect on the 

rest of the schedule. If the rough estimate shows a cost decrease, the algorithm 

calculates the more detailed cost estimate in phase 2 to decide whether the re-

assignment will be executed. 

o Phase 2. estimate cost by SGS (only if phase 1 gives an indication that a re-

assignment would be beneficial): The schedule generation scheme schedules the 

order on the new machine j2 and calculates the resulting cost as described in 

section 3.1. When the resulting schedule cost is lower than the current schedule 

cost, the new schedule replaces the previous one and the algorithm continues its 

search. 

 

Ideally, this process continues until all days have been considered. In order to limit the 

computational effort, the algorithm will be truncated after 100 generated schedules. 
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4 EXPERIMENTAL RESULTS 

In this section, we report detailed computational results of different versions of our 

solution procedure. All procedures have been programmed in Visual C++ 6.0 and tested on an 

Acer Travelmate 634LC with a Pentium IV 1.8 GHz processor. We rely on a self-generated 

test set of 50 problem instances explained in section 4.1. Section 4.2 reports detailed 

computational results for the various machine assignment procedures and the schedule 

generation scheme. In section 4.3, we illustrate the flexibility of the schedule generation 

scheme and the use of the various penalty costs that can be modified to create a schedule that 

fulfils company-specific objectives. 

 

4.1 Generation of problem instances 

 

In order to generate problem instances, we have developed an automatic problem 

generator taking the various problem parameters as pre-specified input values. We vary the 

number of orders (nri) from 1,000; 2,000; 4,000; 8,000 to 16,000 and generate 10 problem 

instances per setting, resulting in 50 problem instances in total. The number of orders as well 

as all other parameters have been set based on the investigation of real-life data available at 

the company. All other parameters are fixed as follows: 

 

Steel-shop characteristics: nrq = 8, nrn = 12, nrj =  20, NQ
qS  has been created by 

random assignments of machine groups for each production step q and JN
nS  has been 

constructed by random assignments of machines for each machine group n.  

Scheduling horizon: nrk = 21 days and nrm = 3 weeks 

Order characteristics: vi = rand[20, 40] (in tons), ti = rand[3, 2*nrk] and Q
iO  has been 

created by random assignments of production steps to each order i (minimum 3 

production steps per order). We distinguished nrl = 10 order groups or production 

flows and also for the assignment of orders to order groups we relied on randomness. 

In order to generate realistic production flow quantities, the values for flnm (in tons) 

have been generated based on a simulated schedule for each problem instance. 
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Order routing network:  

Durations: ptij = rand[0.9 vi, 1.1 vi] (in minutes), djj’  = rand[0, 7] (in days). Similar to 

the flow quantities, the daily machine capacities cjk (in minutes) have been generated 

based on a simulated schedule for each problem instance. 

Costs: aijj’  = rand[0, 99] (€), ei = 4 vi (€ per day), l i = rand[0, 3] vi (€ per day), uj = 8 (€) 

and −
lnb  = +

lnb  = 8 (€). 

 

4.2 Computational performance of our solution approach 

 

Table 1 displays the performance of the schedule generation scheme (SGS) by solving 

the knapsack problem with an exact and a heuristic approach. More precisely, the exact 

branch-and-bound procedure of Kolesar (1967) is compared with a straightforward greedy 

search heuristic in which eligible orders are chosen in decreasing order of their density 

measure. The row with label “Avg. CPU” displays the average CPU time in seconds and the 

row with label “Avg. TC” displays the average total cost. The total costs consist of the 

individual cost factors of section 2.3 (Avg. CA, Avg. CL, Avg. CE and Avg. CF), as displayed 

in the remaining rows. Note that the machine assignment problem has been solved by 

randomly assigning each order to one machine for each production step of its routing. This 

machine assignment problem has been repeated ten times. 

Insert Table 1 About Here 

The table reveals that both the exact and the heuristic solution procedures for the 

knapsack problems are able to provide solutions within a reasonable time limit. The heuristic 

approach is able to generate high quality knapsack solutions (see the small Avg. TC deviations 

between the exact and heuristic approach) but the extra CPU time the exact approach needs is 

relatively small. Hence, in the remainder of this paper, we rely on the exact approach of 

Kolesar (1967) to solve the knapsack problems. 

Table 2 compares the performance of the various machine assignment procedures of 

section 3.2. The table clearly reveals that more sophisticated assignments such as the greedy 

assignment GA(AUF) and the local search assignment LSA result in larger CPU times. But 

the resulting schedule quality of those assignment strategies outperforms the simple GA(AC) 

and the random assignment. The results can be summarised as follows: 
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LSA versus GA(AC): The LSA approach clearly outperforms the GA(AC) approach 

at the expense of a much larger CPU time. However, in relative terms, the improvement of 

LSA compared to the GA(AC) decreases from 8.48% for 1,000 orders to only 0.73% for 

16,000 orders. Note that the LSA approach always has a higher assignment cost (the GA(AC) 

only takes the assignment cost into account) but a lower average total cost. 

GA(AUF) versus GA(AC): The GA(AUF) approach clearly outperforms the GA(AC) 

approach, with a relative limited increase in CPU time. The relative improvement increases 

from 0.62% (1,000 orders) to 2.09% (16,000 orders). Improvements are most remarkable in 

the earliness cost, utilisation costs and production flow cost. 

LSA versus GA(AUF): The LSA approach outperforms the GA(AUF) approach for 

problem instances with up to 4,000 orders, but performs worse for problem instances with 

8,000 and 16,000 orders. Consequently, due to the heavy CPU-time burden, the LSA 

approach is not able to find high quality solutions (within the 100 generated schedules) that 

outperform the simple yet time efficient GA(AUF) approach. 

 

Insert Table 2 About Here 

4.3 Flexibility of our solution approach 

In this section, we analyse the impact of all cost factors on the schedule quality and 

test the ability to modify the cost input parameters to obtain production schedules satisfying 

company specific objectives. In our experiment, we carefully change the cost input factors ei, 

l i, uj, 
−
lnb  and +

lnb  and test their influence on the total quality of the schedule. More precisely, 

we multiply the original cost factor values (see section 4.1) by a factor 0.25, 0.5, 1, 2, 4 or 8 

respectively, holding all other cost factors constant, and measure the resulting schedule 

quality by the following four performance measures:  
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Average lateness: measure the average lateness 
L

C  of all orders over the complete 

scheduling horizon (in days).  

Average earliness: measures the average earliness 
E

C  of all orders over the complete 

scheduling horizon (in days). 

Average utilisation: measures the average machine utilisation/capacity ratio as 

∑∑∑
= = = −∆+

=
nri

i

nrj

j

nrk

k jkjk

ijkijU

cc

xpt
C

1 1 1 1

. 

Average production flow: measures the ratio of all production flow deviations and all pre-

specified flow quantities as 

∑∑∑

∑∑∑

= = =

= = ==
nrl

l

nrn

n

nrm

m

nrl

l

nrn

n

nrm

mF

F

F

C

1 1 1

1 1 1

nm

nm

l

l
.  

 

Note that this experiment has also been set up to validate the quality of our cost reduction 

estimates L
ijkCR , E

ijkCR , U
ijkCR  and F

ijkCR , since these estimates will influence the objective function of 

the knapsack problem and hence, the quality of the constructed schedule. Figure 5 displays the results 

for the problem instances with 8,000 orders and 10 different random machine assignments. All other 

problem instances or machine assignment procedures reveal similar results.  

 

Insert Figure 5 About Here 

Figure 5 clearly shows that the schedule quality, expressed in terms of the four 

performance measures, clearly depends on the input cost factors. All figures show an 

improved performance for the corresponding input factor (e.g. figure 5(a) shows an improved 

average lateness for increasing values for the unit lateness cost l i, figure 5(b) shows an 

improved average earliness for increasing value for the unit earliness cost ei, etc…).  
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This result illustrates the quality of our cost reduction estimates (see section 3.1) and 

the ability of the users of the scheduling algorithm to influence and define the schedule quality 

(the importance of each part of the multiple objective) by modifying the input cost factors. 

Note that the four cost factors of the multiple objective function not always show a trade-off. 

Figures 5(a) and 5(c) show that increasing importance of order lateness costs has a beneficial 

effect on the order lateness as well as on the average machine utilisation, and vice versa. 

Hence, both objectives are correlated as they stimulate earliest start schedules. 

 

5 CONCLUSIONS 

In this paper, we presented a finite capacity production scheduling algorithm for an 

integrated steel company located in Belgium. The algorithm takes various case-specific 

constraints into account and aims at the optimisation of multiple objectives.  

The algorithm consists of two solution steps. A machine assignment step assigns each 

order to a unique machine for each production step. We have tested three different machine 

assignment methods, each taking various cost factors into account. The second step constructs 

a schedule where each operation of all orders is assigned to a particular day, given the 

assigned machines of the previous step. To determine which orders should be selected for 

scheduling at each machine during each day, we construct knapsack problems that take 

capacity constraints, precedence constraints and set-up constraints as well as the multiple 

objectives (lateness costs, earliness costs, utilisation costs and flow costs) into account. 

We have tested our algorithm on a randomly generated dataset and have shown that 

our algorithm is flexible towards the user in terms of input cost parameters. Moreover, we 

show that a local search machine assignment (step 1) combined with an optimal knapsack 

solver (step 2) leads to the best performing results. 
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FIGURE 1 

An example steel shop (left (a)) and an example order routing network (right (b)) 
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FIGURE 2 

Our solution approach 
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FIGURE 3 

An estimate for order lateness 
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FIGURE 4 

A fictive example to illustrate the calculation of the production flow cost reduction 
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TABLE 1 

Comparison between exact and heuristic knapsack procedure 

 

nri
exact heuristic exact heuristic exact heuristic exact heuristic exact heuristic

Avg. CPU 0.04s 0.04s 0.08s 0.07s 0.18s 0.16s 0.47s 0.38s 1.70s 0.84s
Avg. TC 448,739 453,800 802,156 809,077 1,510,731 1,519,521 2,928,450 2,937,001 5,721,389 5,730,693
Avg. C A

126,557 126,557 253,846 253,846 506,713 506,713 1,009,4351,009,435 2,024,264 2,024,264
Avg. C L

23,127 22,829 30,735 30,751 53,344 53,897 90,705 90,806 166,188 166,402
Avg. C E

29,339 28,828 64,943 64,218 132,080 131,066 277,023 275,966 565,306 564,322
Avg. C U

129,451 135,275 212,094 219,668 374,385 383,357 701,847 711,758 1,368,577 1,379,292
Avg. C F

140,264 140,309 240,536 240,593 444,208 444,487 849,440 849,035 1,597,052 1,596,411

2000 4000 8000 160001000
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TABLE 2 

Comparison of different machine assignment approaches 

 
nri 1000 2000 4000 8000 16000

Random 0.04s 0.08s 0.18s 0.47s 1.70s
GA(AC) 0.07s 0.13s 0.30s 0.92s 2.46s

LSA 5.54s 9.86s 25.39s 84.63s 229.38s

GA(UAF) 0.17s 0.32s 0.88s 2.54s 6.60s

Random 448,739 802,156 1,510,731 2,928,450 5,721,389
GA(AC) 362,651 645,390 1,209,376 2,358,950 4,604,384

LSA 331,868 605,474 1,174,837 2,330,723 4,570,717

GA(UAF) 360,407 638,359 1,192,511 2,322,494 4,507,826

Random 126,557 253,846 506,713 1,009,435 2,024,264

GA(AC) 43,110 86,780 173,116 345,530 691,843
LSA 45,013 88,945 174,456 346,356 692,463
GA(UAF) 53,739 103,660 205,559 410,145 820,593
Random 23,127 30,735 53,344 90,705 166,188
GA(AC) 17,837 25,501 46,462 82,581 155,232
LSA 15,440 22,276 43,245 81,326 152,738
GA(UAF) 24,974 34,900 61,035 112,022 209,644
Random 29,339 64,943 132,080 277,023 565,306
GA(AC) 27,164 60,428 119,746 255,733 514,755
LSA 27,211 59,645 120,009 255,524 514,987
GA(UAF) 23,192 49,362 99,788 198,063 399,730
Random 129,451 212,094 374,385 701,847 1,368,577
GA(AC) 118,611 193,099 340,400 634,104 1,248,311
LSA 113,521 189,348 337,780 634,050 1,249,648
GA(UAF) 105,974 171,961 301,392 568,778 1,110,039
Random 140,264 240,536 444,208 849,440 1,597,052
GA(AC) 155,930 279,582 529,652 1,041,002 1,994,244
LSA 130,684 245,260 499,346 1,013,468 1,960,880
GA(UAF) 152,527 278,477 525,736 1,033,487 1,967,819

Avg. C E

Avg. C U

Avg. C F

Avg. CPU

Avg. TC

Avg. C A

Avg. C L
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FIGURE 5 

Influence of the input cost parameters on the performance measures 
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