
D/2006/6482/45

Vlerick Leuven Gent Working Paper Series 2006/41

A FINITE CAPACITY PRODUCTION SCHEDULING

PROCEDURE FOR A BELGIAN STEEL COMPANY

DIETER DEBELS

MARIO VANHOUCKE

Mario.Vanhoucke@vlerick.be

2

A FINITE CAPACITY PRODUCTION SCHEDULING

PROCEDURE FOR A BELGIAN STEEL COMPANY

DIETER DEBELS

Ghent University

MARIO VANHOUCKE

Vlerick Leuven Gent Management School

Contact:

Mario Vanhoucke

Vlerick Leuven Gent Management School

Tel: +32 09 210 97 81

Fax: +32 09 210 97 00

Email: Mario.Vanhoucke@vlerick.be

3

ABSTRACT

We present a finite capacity production scheduling algorithm for an integrated steel company

located in Belgium. This multiple-objective optimization model takes various case-specific

constraints into account and consists of two steps. A machine assignment step determines the

routing of an individual order through the network while a scheduling step makes a detailed

timetable for each operation for all orders.

The procedure has been tested on randomly generated data instances that reflect the

characteristics of the steel company. We report promising computational results and illustrate

the flexibility of the optimization model with respect to the various input parameters.

Keywords. Master production scheduling; manufacturing planning and control;

scheduling/sequencing.

4

1 INTRODUCTION

Due to the often complex nature of production planning, various hierarchical

production planning (HPP) approaches have been presented in literature to cope with

interactions between product demand, production capacity, real-time data, etc… Each

hierarchical level imposes various constraints and objectives to the lower level while the

lower level returns feedback about the production progress. There exist different relations of

aggregation and desaggregation between the hierarchical levels, based on product unit

(product parts into products into product archetypes), production unit (machine into machine

group into production step into factory unit), scope (short term, medium term, long term),

time unit (minutes, days, weeks, months) and decision level (shop-floor workers, production

management, top management) (Venkateswaran et al., 2004). Two essential levels in many

HPP systems are the Master Production Schedule (MPS), which determines medium-long

term production quantities for the different products, and the Material Requirements Planning

(MRP) which translates the resulting master schedule into planned start times for the product

components. Early endeavours approach all HPP-systems as infinite loading systems that

were insufficiently integrated with the capacity requirements. The MPS was constructed by

omitting all capacity constraints and the resulting capacity infeasibilities needed to be

straightened in the MRP-schedule by ex post facto capacity planning techniques such as rough

cut capacity planning (RCCP) and capacity requirements planning (CRP). However, most

studies reveal that these techniques are highly insufficient, and production planners induce a

lead time increase while incorporating capacity requirements, leading to inferior schedules

with large work-in-process inventories and high costs (Sum and Hill, 1993; Fry et al., 1992).

The need for integrating capacity limitations into planning algorithms raised in the

early 1980s when many manufacturing companies started to use MRP as a primary planning

tool (Rom et al., 2002). Billington et al. (1983) were the first to propose a finite capacity MRP

scheduling problem in a multi-stage environment. The proposed linear programming

formulation aims at computing the required production lead times in correspondence with the

demands and the available capacity, thereby reducing in-process inventory compared to the

usual practice in MRP. However, they did not provide any efficient heuristic procedure,

capable to cope with large scale problem instances. Sum and Hill (1993) further defined the

research area by also considering setup costs and tardiness costs and by including an order

merging/breaking mechanism.

5

They presented a heuristic procedure in which a schedule generation scheme is

incorporated, based on the resource-constrained project scheduling problem. Diaz and Laguna

(1996) used a topology of multiple parallel work centres for the production of similar products

and proposed an LP problem formulation for a finite capacity MRP focusing on minimising

multiple cost components. They did not provide a heuristic procedure to solve real-life

problems. They stressed the importance of already incorporating resource constraints at the

MPS-level and proposed some methods to improve the RCCP. Taal and Wortmann (1997)

were the first to embed capacity constraints in a flexible flow shop environment, and

presented a priority rule to create a schedule in line with the planning objectives. Finally, Rom

et al. (2002) introduced the capacity-constrained MRP system in a job shop environment.

Their LP model formulation allows flexibility to change the objective function according to

specific planning goals, but does not simultaneously optimise multiple objectives.

In this paper, we present a finite capacity production scheduling algorithm for the

integrated steel company Arcelor Gent (formerly known as Sidmar), located on the Ghent-

Terneuzen Canal, around 20 km from the centre of the city of Ghent (Belgium). Arcelor Gent

yearly produces 5 million tonnes of flat steel strip for the automotive industry and for all kinds

of high-quality applications such as domestic appliances, sanitary, heating, construction and

furniture and handles every step of the production process, from the supply of raw materials to

the coating of steel and the production of laser-welded blanks. With 5,500 employees, they are

one of the largest employers in the region. They are part of Arcelor, one of the world´s largest

steel companies. For more information, we refer to www.sidmar.be.

Planning and scheduling problems in iron and steel production have not drawn as wide

an attention of the operations management researchers as many other industries. However, the

iron and steel industry is both capital and energy intensive, which makes the importance of

effective planning and scheduling in this industry by no means less than that in other

industries (Tang et al., 2001). Moreover, Lee et al. (1996) argue that tools are available to

develop efficient algorithwms for the extremely difficult scheduling environment of steel and

research in this area should be stimulated since the return on investment for software to

support improved steel making productivity is very high. Most studies focus on sub-parts of

the production process (Harjunkoski et al., 2001) and ignore interactions between these sub-

parts, although the objective of steel companies to reduce the lateness and lead-time of the

orders increases the need for an integral approach of the problem. In our steel shop production

system, we provide a solution approach for the complete production process, taking various

constraints and objectives into account.

6

We restrict our procedure to a daily bucket system, where we only assign orders to

machines on a daily basis without determining the exact production sequence of the orders on

a particular day. Though we already incorporate sequence dependent setup costs at this

aggregated level (see section 2.2), the exact sequence of orders within a daily bucket needs to

be determined by shop floor decisions or process-specific algorithms and is outside the scope

of this paper.

The outline of the paper is as follows. Section 2 gives a problem formulation and

defines the various constraints and problem objectives into detail. Section 3 presents our

solution procedure to solve the problem under study. In section 4 we present extensive

computational results and conclusions are given in section 5.

2 PROBLEM FORMULATION

2.1 Problem parameters and decision variables

A steel shop environment is closely related to a flexible flow shop as it consists of

several serial production steps, each consisting of several identical machines in parallel (Lee

et al., 1996). The parallel machines may be clustered into machine groups (e.g. they are

located at the same place and make use of the same storage facilities). A set of accepted

production orders needs to be scheduled. The ordered coils can slightly differ from each other

in terms of width, thickness, length, quality, etc. (Okano et al., 2004), resulting in a wide

variety of product types.

In the following, we briefly describe the various parameters and the decision variables

in order to formulate the production scheduling problem. These parameters will be explained

in detail and used throughout the remainder of the manuscript.

7

Parameters

Steel-shop characteristics

nrq Number of production steps (index q = 1, …, nrq)

nrn Number of machine groups (index n = 1, …, nrn)

nrj Number of machines (index j = 1, …, nrj)

NQ
qS Set of machine groups of production step q

JQ
qS Set of machines of production step q

JN
nS Set of machines of machine group n

Scheduling horizon

nrk Number of days (index k = 1, …, nrk)

nrm Number of weeks (index m = 1, …, nrm)

Order characteristics

nri Number of orders (index i = 1, …, nri)

Each order can be characterised by:

vi Volume of order i (in tons)

ti Due date or delivery date of order i

Q
iO Set of production steps needed to produce order i (Q

iO ⊂ {1, …, nrq})

The orders can be aggregated in order groups or production flows, as follows:

nrl Number of order groups (production flows) for the flow constraints (index l = 1, …,

nrl)

O
lF Set of production orders that belong to production flow l

flnm Pre-specified flow quantity (in tons) for order group l on machine group n during week

m

8

Order routing network

Durations:

pij Processing time of order i on machine j (in minutes)

= function of order i, machine j and volume vi

djj’ Intermediate duration for order i between machine j and machine j’ (in days)

= transportation and minimal cooling down time

cjk Capacity of machine j on day k (in minutes)

Costs:

aijj’ Assignment cost of order i (in €) if assigned to machines j and j’

= sum of costs of transportation and cooling down

ei Earliness unit cost for order i (in € per day)

l i Lateness unit cost for order i (in € per day)

uj Utilization cost of machine j (in € per minute deviation of 100% utilization)

−
lnb Lower flow penalty cost (scheduled production ≤ lnmf) (in € per ton)

+
lnb Upper flow penalty cost (scheduled production exceeds lnmf) (in € per ton)

Decision variables

A production schedule consists of an assignment of all operations for each order taking

various constraints (section 2.2) and multiple objectives (section 2.3) into account. Hence,

every operation of order i needs to be executed on a machine j on a particular day k, resulting

in the decision variables as follows:

xijk = 1, if an operation of order i is assigned to machine j on day k

 = 0, otherwise

Note that we construct a production schedule where the daily machine capacity and

processing times of the orders are expressed in minutes whereas the intermediate time

between machines is expressed in days. Hence, for the production of steel, time spent for

operations at the machinery lies far beyond the time needed to support intermediate

manipulations such as transporting, heating or cooling down.

Insert Figure 1 About Here

9

Figure 1(a) displays an example steel shop network with 4 production steps, 7 machine

groups and 11 machines. Dummy machine 0 and dummy machine 12 (or in general nrj + 1)

are used to represent the start and finishing time of an order. Figure 1(b) displays the order

routing network of an example order for which the routing is limited to production steps 1, 2

and 4. In order to process all operations of the order, the algorithm must select a single path

from this network consisting of a sequence of machines. The production steps of a coil of steel

consist of casting, hot rolling, pickling, and cold rolling. In order to give specific properties to

the coil, extra operations such as annealing, skin passing, galvanizing, coating, recoiling or

cutting can be performed. Each production step has many typical production constraints and

solving a steel shop scheduling problem involves handling a large number of complicated

chemistry-, geometrical- and scheduling rules.

2.2 Problem constraints

In this section, we discuss the four different types of technical restrictions (capacity,

assignment, precedence and setup constraints) that the steel company incorporates in its

production schedule.

Capacity constraints: Each machine j has a limited capacity cjk expressed in minutes

per day, which may not be exceeded by all assigned orders on that machine at day k. In order

to avoid that this constraint leads to a structural under-use of the available machine capacity,

we add the unused capacity ∆cjk-1 of the previous day to the capacity cjk. However, the

capacity shift ∆cjk-1 is limited to a threshold value τ such that a temporal shortage of eligible

orders at day k - 1 does not create unrealistic capacity at day k. The capacity constraints can be

formulated as follows:

1
1

−
=

∆+≤∑ jkjk

nri

i
ijkij ccxpt j = 1, …, nrj and k = 1, …, nrk [1]

with

−∆+=∆ ∑

=
− ijk

nri

i
ijjkjkjk xptccc

1
1,min τ [2]

In our production scheduling algorithm, we set τ equal to 10 minutes.

10

Assignment constraints: In order to process all operations of an order, the algorithm

must select a unique path from the order routing network consisting of a sequence of

machines. Therefore, each operation of order i needs to be assigned to one machine j per

production step q ∈ Q
iO , as follows:

∑ ∑
∈ =

=
JQ
qSj

nrk

k
ijkx

1

1 i = 1, …, nri and ∀q ∈ Q
iO [3]

Precedence constraints: The precedence relations between operations of an order i

are shown by the order routing network and define the relations between all machines j1 ∈

JQ
qS

1
 and j2 ∈ JQ

qS
2

 of two sub-sequent production steps q1 ∈ Q
iO and q2 ∈ Q

iO with a minimal

time interval equal to the duration
21 jijd . Hence, for each couple (q1, q2) ∈ Q

iO of two

subsequent production steps in the routing of an order i, the algorithm incorporates the

precedence relations as follows:

() ∑∑
==

≤+
nrk

k
kijjij

nrk

k
kij kxdkx

11
2211

 i = 1, …, nri, j1 ∈ JQ
qS

1
 and j2 ∈ JQ

qS
2

 [4]

Setup constraints: Our production scheduler assigns orders to machines on a daily

basis and does not determine the exact sequence of the individual orders. The setup

constraints take sequence-dependent setup costs or transition costs into account by imposing

campaigns. Orders with similar characteristics will be grouped in production campaigns,

which is a production run with specific start and end times in which coils of a particular type

are processed continuously on a process line (Okano et al., 2004). As an example, it is

beneficial to start a campaign of thin coils at the cold rolling mill when new rollers are

installed, since the thicker coils can be rolled when rollers start to wear out. In our problem

formulation, we cluster orders with low mutual setup costs for a particular machine and ensure

that only order i of this campaign can be scheduled on machine j on day k and prevents the

assignment of all other orders i’, as follows:

0
'

' =∑
∀i

jkix [5]

11

2.3 Problem objective function

Previous research studies reveal that the multiple objectives that are used in the steel

making industry are often very company-specific. Lee et al. (1996) focus on full capacity use

to make the expensive machinery pay, raised the issue of allocating orders efficiently among

parallel machines and suggested to group all orders for coils with similar processing

properties in order to reduce setup costs. Okano et al. (2004) take a customer satisfaction point

of view by minimising the lateness of the orders. Moreover, they consider various technical

constraints by production campaigns. Wiers (2002) focuses on stock quantity reduction by

means of lead time minimisation. Our production scheduler optimises a multiple objective

function by minimising the total cost TC as a sum of five different cost functions: assignment

cost CA, lateness cost CL, earliness cost CE, utilisation cost CU and production flow cost CF,

i.e. FUELA CCCCCTC ++++= .

Assignment cost: The total assignment cost is an immediate result of the selection of

paths in the order routing networks. An assignment cost acijj’ is charged for each arc (j, j’) of

the selected path of an order i, as follows:

∑∑ ∑ ∑∑
= = += +==

=
nri

i

nrj

j

nrj

jj

nrk

kk
kij

nrk

k
ijkijj

A xxac
1 1 1' 1'

''
1

'C [6]

Lateness cost: The lateness cost penalises the production orders that finish later than

the pre-negotiated due date ti, and equals the unit lateness cost l i times the number of days

order i is late (or zero, if the order finishes earlier than ti). The algorithm determines the

finishing day k of order i as the assignment of the order on the dummy end machine nrj + 1,

and hence the lateness cost can be calculated as follows:

∑ ∑
= =

+ −=
nri

i
i

nrk

k
knrjii

L tkxl
1 1

 1),0max(C [7]

12

Earliness cost: The earliness cost incorporates the lead-time and stock level

minimisation and states that orders should be started no earlier than necessary to finish within

the pre-negotiated due date ti. Therefore, the algorithm calculated the latest possible starting

time LSTi0 by means of simple backward calculations, starting from the end dummy machine

nrj + 1. The earliness cost is equal to the unit earliness cost ei times the number of days the

order i starts earlier than its LSTi0 (or zero, if the order starts after its LSTi0).

∑ ∑
= =

−=
nri

i

nrk

k
kiii

E kxLSTe
1 1

00),0max(C [8]

Utilisation cost: The utilisation cost penalises each time unit (minute) a machine is

idle. Hence, the algorithm measures the deviation between the daily machine capacity

1−∆+ jkjk cc and the capacity use ∑
=

nri

i
ijkij xp

1

 of the assigned orders, such that the total utilisation

cost can be calculated as follows:

∑∑ ∑
= = =

−

−∆+=

nrj

j

nrk

k

nri

i
ijkijjkjkj

U xpccuC
1 1 1

1 [9]

Production flow cost: The production of steel requires primary resources (i.e.

machines) as well as secondary resources, such as colourings or chemical additives. An

efficient stock management of these secondary resources leads to substantial cost reductions.

Hence, the steel company clusters orders that use the same secondary resources at particular

production steps in order groups or production flows. This allows the determination of a pre-

specified flow quantity flnm for order group l on machine group n during week m at the MPS

level. Our production scheduler takes these flow constraints into account by penalizing

deviations (either below (−lnb) or above (+
lnb)) between the scheduled order volumes and the

pre-specified flow volumes. Thanks to these production flow quantities, the steel company

can order the corresponding secondary resources on a just in time basis, avoiding excessive

safety stocks.

13

The production flow cost can be modelled as follows:

∑∑∑
= = =

+

−

<∆∆−

≥∆∆
=

nrl

l

nrn

n

nrm

m lnmlnlnm

lnmlnlnmF

fbf

fbf
C

1 1 1 0 if

0 if
 [10]

where nrl has been previously defined as the number of production flows and flnm the pre-

specified flow quantity (in tons) for order group l on machine group n during week m. Note

that we consider, without loss of generality, weekly buckets to describe the pre-specified

production flow volumes. The flow deviation ∆Flnm for flow l at machine group n during

week m can be calculated as

−∆+=∆ ∑ ∑ ∑

∈ ∈ ∈O
l

JN
n mFi Sj Wk

ijki-lnmlnmlnm xvfff 1 [11]

with Wm the set of days belonging to week m.

3 SOLUTION APPROACH

In this section, we describe our solution algorithm to solve the production scheduling

problem under study. Our solution approach consists of two steps, taking the various

constraints and objectives into account, as follows:

Step 1. Machine assignment problem: each order is assigned to one machine for each

production step of its routing (assignment constraint), resulting in the total assignment

cost CA.

Step 2. Scheduling problem: all operations of each order need to be scheduled on a

particular day (given the assigned machines of step 1), taking the three remaining

constraints (capacity constraints, precedence constraints, setup constraints) and the

multiple objectives (lateness costs, earliness costs, utilisation costs and flow costs) into

account.

14

Insert Figure 2 About Here

Figure 2 displays a fictive example with two orders. In step 1, each order is assigned to

a specific machine on its routing (path 3 – 6 – 10 for order 1 and path 2 – 8 – 10 for order 2).

These assigned machine paths will be used as an input to solve the scheduling problem of step

2. In figure 2, both orders start on day 2 and have been scheduled as soon as possible. In

section 3.1, we discuss the scheduling problem (step 2) in detail. Section 3.2 elaborates on the

machine assignment problem (step 1).

3.1 Scheduling problem

In order to schedule all orders in time, the algorithm solves a knapsack problem for

each machine and for each day of the scheduling horizon. Hence, our schedule generation

scheme (SGS) iterates over all machines and all days, and can be shown in pseudo-code, as

follows:

 For k:=1 to nrk

 For j:=1 to nrj

 Knapsack Problem (j,k)

The knapsack problem determines for each machine and each day the set of eligible

orders E
jkO that are potential candidates to enter the knapsack (i.e. scheduled on machine j

during day k). An order i is eligible on machine j on day k if the following constraints are

satisfied:

• Assignment constraints: an order can only be scheduled on a machine determined by

the machine assignment problem of section 3.2,

• Precedence constraints: an order can only be scheduled if the previous operation of

that order has been scheduled earlier, taking the intermediate duration into account,

• Setup constraints: an order can only be scheduled within the production campaign

restrictions.

15

Hence, the knapsack problem boils down to the selection of orders to be scheduled on

machine j of day k, satisfying the capacity constraints and optimizing the various costs factors

of section 2.2.

 max ∑
∈

+++=
E
jkOi

F
ijk

U
ijk

E
ijk

L
ijk CRCRCRCRTCR [12]

 subject to

 ∑
∈

−∆+≤
E
jkOi

jkjkijkij ccxpt 1 [13]

The objective function maximises the total cost reduction TCR when assigning order i

to machine j on day k. Since the cost of scheduling that order depends on the schedule of all

other orders, we need to estimate the total cost reduction TCR when assigning order i to

machine j on day k, denoted by L
ijkCR (estimated lateness cost reduction), EijkCR (estimated

earliness cost reduction), U
ijkCR (estimated utilisation cost reduction) and F

ijkCR (estimated

production flow cost reduction). The determination of these estimates will be discussed in the

remainder of this section. The constraint of equation [13] is equal to the capacity constraint of

machine j on day k of equation [1]. The knapsack problem is proven to be an NP-complete

problem (Hirschberg and Wong, 1976).

Estimated lateness cost reduction: The lateness cost depends on the due date of

order i and can only be determined when the last operation of order i has been scheduled.

Hence, an estimate for the lateness cost reduction L
ijkCR of assigning order i to machine j on

day k is equal to the extra lateness cost we would obtain when postponing it to day k + 1.

Hence, we need to rely on an estimate of the probability ijkP as the chance that an order i will

increase the lateness by one day if the order is not scheduled on day k. Consequently, the

estimated lateness cost reduction is equal to iijk
L
ijk lPCR = and is displayed in figure 3.

16

Insert Figure 3 About Here

The probability ijkP is assumed to be 100% when the scheduling day k is larger then or

equal to the latest start time LSTij. This LSTij can be easily determined by means of

straightforward backward calculations starting from the order due date ti. Moreover, we

assume that this probability is a function of the remaining operations (denoted as the

remaining production steps rps) of the order and a slack-per-operation parameter α. Therefore,

we define a linear function such that the probability increases linearly from 0% to 100%

between LSTij – α* rps ≤ k ≤ LSTij . Outside the interval [LSTij – α* rps, LSTij], the probability

equals 0% (k ≤ LSTij – α* rps) or 100% (k ≥ LSTij). In our production scheduling algorithm, we

set α equal to 1.

Estimated earliness cost reduction: The earliness cost depends on the start of the

first operation of order i and is measured as the deviation between the start of the first

operation and the latest start time LSTi0 of this operation. Hence, the estimated earliness cost

reduction can be calculated as follows:

−
>≥

=
otherwise,

0iforif0 0

i

iE
ijk e

jLSTk
CR [14]

Estimated utilisation cost reduction: Each order i that enters the knapsack needs to be

produced on machine j on day k, and hence, increases the utilisation by ptij minutes (and

reduces the utilisation cost by uj per minute). Hence, the estimated utilisation cost reduction

can be calculated as follows:

ijj
U
ijk ptuCR = [15]

Estimated production flow cost reduction: Each order i of production flow l (i ∈

O
lF) that enters the knapsack to be scheduled at machine j on day k will affect the production

flow deviation lnmf∆ (see equation [11]) of machine group n (with j ∈ JN
nS) during the week m

(k ∈ Wm).

17

We define for each order i a density measure
ij

iln
U
ijk

E
ijk

L
ijk

i pt

vbCRCRCR −+++
=δ which

measures the total estimated cost reduction per time unit (in minutes) if an order i enters the

knapsack at machine j on day k. The last term states that the entrance of an eligible order i

reduces the production flow cost by ilnvb− and hence, assumes that the entrance of eligible

order i results in a reduction of the flow deviation (there is a flow ‘under-production’) (note

that the knapsack problem strives for a maximal knapsack density and hence, priority will be

given to orders with a high value for the density measure). However, some orders can enter

the knapsack resulting in an increase of flow deviation (in case of a flow ‘over-production’)

and hence, an estimate for the production flow deviations needs to be calculated.

We calculate an estimate of the flow deviation equations [11] for each order i (denoted

by iEF∆) under the assumption that

- The orders i’ of the same production flow l (i.e. i’ ∈ O
lF) on machine j’ that have been

scheduled by the algorithm on previous days k’ < k of the same week are already

included.

- All eligible orders i” of the same production flow l (i.e. i and i” ∈ O
lF) with a higher

or equal density value of order i (ii δδ ≥") will be scheduled (i.e. entering the

knapsack) prior to scheduling order i, as

∑∑ ∑ ∑
≥

∈∈ ∈
<
∈

−−∆+=∆

ii

O
l

O
l

JN
n m Fi

i

Fi Sj
kk
Wk

kjii-lnmlnmi vxvffEF

δδ "

"

"

' '
'
'

''''1 [16]

with (a) the pre-specified production flow volumes, (b) the production volume of all

scheduled orders i’ and (c) the production volume of all orders i” that will probably be

scheduled prior to scheduling order i plus the production volume of order i.

(a) (b) (c)

18

The value of iEF∆ reveals whether or not scheduling order i on machine j on day k

will lead to overproduction of production flow l. If iEF∆ ≥ 0, then scheduling order i will

probably reduce the underproduction of flow l. If iEF∆ ≤ -vi, then scheduling order i will

probably increase the overproduction of l. If -vi < iEF∆ < 0, then scheduling order i will

probably change the underproduction of l to an overproduction. Hence, we rely on this flow

deviation estimate to determine the production flow cost reduction F
ijkCR as follows:

∆+∆+

−=
+−

+

−

ilniiln

iln

iln

F
ijk

EFbEFvb

vb

vb

CR

)(0- if

 if

0 if

<∆≤
−≤∆

≥∆

ii

ii

i

EFv

vEF

EF

 [17]

Figure 4 illustrates the production flow reduction estimate based on an example

project of our production scheduler with 9 eligible orders on the third day of a particular week

with 3 pre-specified production flows for which OF1 = {1, 6, 8}, OF2 = {2, 3, 7} and OF3 = {4,

5, 9}. The order volumes and density matrix of the orders are assumed to equal to (8, 7, 11,

12, 9, 9, 6, 13, 8) and (1.10, 0.93, 0.90, 0.85, 0.80, 0.76, 0.67, 0.63, 0.57), respectively.

Insert Figure 4 About Here

19

The black areas represent the production volume of all scheduled orders i’ on previous

days of the week for each flow. The density measure serves as a priority estimate for each

order to be selected in the knapsack (see figure 4), as follows:

• Flow 1: 1 – 6 – 8: the entrance of all these orders leads to a decrease of the production

flow deviation, and hence, the estimate of the flow deviation iEF∆ will be zero or

positive.

• Flow 2: 2 – 3 – 7: the entrance of order 2 leads to a decrease of the production flow

deviation (iEF∆ ≥ 0). The entrance of order 3 will change the underproduction of flow

2 to an overproduction (-vi < iEF∆ < 0) while the entrance of order 7 will increase the

production flow deviation iEF∆ ≤ -vi.

• Flow 3: 4 – 5 – 9: the entrance of all these orders leads to an increase of the

production flow deviation, and hence, all estimates iEF∆ ≤ -vi.

The above estimates of the flow deviation equations iEF∆ will be used to calculate the

F
ijkCR values (32, 14, -42, 120, -90, 36, -36, 52, -80) which will be used in the objective

function of the knapsack problem.

3.2 Machine assignment problem

The basic machine assignment problem randomly selects for each order a single path

from the order routing network consisting of a sequence of machines. However, the algorithm

is able to control the machine assignment process by estimating cost factors in three various

ways, as follows:

Greedy assignment (based on assignment cost) (GA(A)): Each order will be

assigned to the path with the lowest assignment cost using a shortest path algorithm of

Dijkstra (1959).

Greedy assignment (based on assignment, utilisation and production flow cost)

(GA(AUF)): The orders will be assigned, one after another, to the path with the lowest total

cost using the shortest path algorithm of Dijkstra (1959). The total cost is equal to the

assignment cost (similar to the GA(A) approach) plus a penalty estimate for the utilisation and

production flow cost.

20

The penalty costs of each arc (j, j’) are calculated based on the assignments of all

previously assigned orders. To obtain utilisation and production flow estimations, we assume

that these orders have been scheduled at their latest start time LSTij.

- The utilisation penalty cost for arc (j, j’) of order i is equal to uj when the cumulative

available capacity of machine j before LSTij has been reserved already completely by

the previously assigned orders, and equals zero otherwise.

- The production flow penalty cost for arc (j, j’) of order i equals +
lnb when the

cumulative pre-specified production flow quantities remaining has been reserved

already completely by the previously assigned orders, and equals zero, otherwise.

-

Consequently, positive penalty factors for an arc (j, j’) give the shortest path algorithm

an incentive to select another arc of another path in the order routing network for order i.

Local search assignment (LSA): The local search procedure embeds the SGS of

section 3.1 in a local search procedure in order to find high quality schedules. The procedure

starts with an initial schedule, constructed by the GA(A) approach and the SGS procedure,

and searches for improvements by iteratively changing the machine assignments of a single

order i. The pseudo-code of the local search procedure can be displayed as follows:

Procedure LSA()

 Construct initial schedule

 For k = 1 to nrk

 For i = 1 to nri

 For q = 1 to nrq

 For j1 = first machine to last machine of JQ
qS

 If kijx
1

= 1

 For j2 = first machine to last machine of JQ
qS

 change assignment of order i from j1 to j2

 If “check constraint feasibility” then ∆costs = “phase 1 cost estimate”

 If ∆costs < 0 then costs = SGS()

 If costs < best found costs then replace best found schedule

 Else change assignment of i again from j2 to j1.

21

The local search procedure iteratively searches for each day k whether a re-assignment

of an order would lead to improvements. Therefore, the algorithm considers all possible re-

assignments of an order from machine j1 to machine j2 within a production step q, and checks

the resulting constraint feasibility and the resulting cost changes, as follows:

- Check constraint feasibility: this sub-routine checks whether all constraints are satisfied

when re-assigning order i from machine j1 to machine j2 of the same production step q.

- New cost estimation: The machine assignment change will lead to a new cost, that is

estimated in two phases.

-

o Phase 1. quick and rough estimate: this cost estimate is a quick and rough

estimate to evaluate whether the order re-assignment is a valuable alternative that

needs further detailed analysis. The “phase 1 cost estimate” is equal to the change

in the assignment cost plus the new utilisation and flow cost. For the latter two,

the algorithm simply calculates the cost changes by ignoring the cost effect on the

rest of the schedule. If the rough estimate shows a cost decrease, the algorithm

calculates the more detailed cost estimate in phase 2 to decide whether the re-

assignment will be executed.

o Phase 2. estimate cost by SGS (only if phase 1 gives an indication that a re-

assignment would be beneficial): The schedule generation scheme schedules the

order on the new machine j2 and calculates the resulting cost as described in

section 3.1. When the resulting schedule cost is lower than the current schedule

cost, the new schedule replaces the previous one and the algorithm continues its

search.

Ideally, this process continues until all days have been considered. In order to limit the

computational effort, the algorithm will be truncated after 100 generated schedules.

22

4 EXPERIMENTAL RESULTS

In this section, we report detailed computational results of different versions of our

solution procedure. All procedures have been programmed in Visual C++ 6.0 and tested on an

Acer Travelmate 634LC with a Pentium IV 1.8 GHz processor. We rely on a self-generated

test set of 50 problem instances explained in section 4.1. Section 4.2 reports detailed

computational results for the various machine assignment procedures and the schedule

generation scheme. In section 4.3, we illustrate the flexibility of the schedule generation

scheme and the use of the various penalty costs that can be modified to create a schedule that

fulfils company-specific objectives.

4.1 Generation of problem instances

In order to generate problem instances, we have developed an automatic problem

generator taking the various problem parameters as pre-specified input values. We vary the

number of orders (nri) from 1,000; 2,000; 4,000; 8,000 to 16,000 and generate 10 problem

instances per setting, resulting in 50 problem instances in total. The number of orders as well

as all other parameters have been set based on the investigation of real-life data available at

the company. All other parameters are fixed as follows:

Steel-shop characteristics: nrq = 8, nrn = 12, nrj = 20, NQ
qS has been created by

random assignments of machine groups for each production step q and JN
nS has been

constructed by random assignments of machines for each machine group n.

Scheduling horizon: nrk = 21 days and nrm = 3 weeks

Order characteristics: vi = rand[20, 40] (in tons), ti = rand[3, 2*nrk] and Q
iO has been

created by random assignments of production steps to each order i (minimum 3

production steps per order). We distinguished nrl = 10 order groups or production

flows and also for the assignment of orders to order groups we relied on randomness.

In order to generate realistic production flow quantities, the values for flnm (in tons)

have been generated based on a simulated schedule for each problem instance.

23

Order routing network:

Durations: ptij = rand[0.9 vi, 1.1 vi] (in minutes), djj’ = rand[0, 7] (in days). Similar to

the flow quantities, the daily machine capacities cjk (in minutes) have been generated

based on a simulated schedule for each problem instance.

Costs: aijj’ = rand[0, 99] (€), ei = 4 vi (€ per day), l i = rand[0, 3] vi (€ per day), uj = 8 (€)

and −
lnb = +

lnb = 8 (€).

4.2 Computational performance of our solution approach

Table 1 displays the performance of the schedule generation scheme (SGS) by solving

the knapsack problem with an exact and a heuristic approach. More precisely, the exact

branch-and-bound procedure of Kolesar (1967) is compared with a straightforward greedy

search heuristic in which eligible orders are chosen in decreasing order of their density

measure. The row with label “Avg. CPU” displays the average CPU time in seconds and the

row with label “Avg. TC” displays the average total cost. The total costs consist of the

individual cost factors of section 2.3 (Avg. CA, Avg. CL, Avg. CE and Avg. CF), as displayed

in the remaining rows. Note that the machine assignment problem has been solved by

randomly assigning each order to one machine for each production step of its routing. This

machine assignment problem has been repeated ten times.

Insert Table 1 About Here

The table reveals that both the exact and the heuristic solution procedures for the

knapsack problems are able to provide solutions within a reasonable time limit. The heuristic

approach is able to generate high quality knapsack solutions (see the small Avg. TC deviations

between the exact and heuristic approach) but the extra CPU time the exact approach needs is

relatively small. Hence, in the remainder of this paper, we rely on the exact approach of

Kolesar (1967) to solve the knapsack problems.

Table 2 compares the performance of the various machine assignment procedures of

section 3.2. The table clearly reveals that more sophisticated assignments such as the greedy

assignment GA(AUF) and the local search assignment LSA result in larger CPU times. But

the resulting schedule quality of those assignment strategies outperforms the simple GA(AC)

and the random assignment. The results can be summarised as follows:

24

LSA versus GA(AC): The LSA approach clearly outperforms the GA(AC) approach

at the expense of a much larger CPU time. However, in relative terms, the improvement of

LSA compared to the GA(AC) decreases from 8.48% for 1,000 orders to only 0.73% for

16,000 orders. Note that the LSA approach always has a higher assignment cost (the GA(AC)

only takes the assignment cost into account) but a lower average total cost.

GA(AUF) versus GA(AC): The GA(AUF) approach clearly outperforms the GA(AC)

approach, with a relative limited increase in CPU time. The relative improvement increases

from 0.62% (1,000 orders) to 2.09% (16,000 orders). Improvements are most remarkable in

the earliness cost, utilisation costs and production flow cost.

LSA versus GA(AUF): The LSA approach outperforms the GA(AUF) approach for

problem instances with up to 4,000 orders, but performs worse for problem instances with

8,000 and 16,000 orders. Consequently, due to the heavy CPU-time burden, the LSA

approach is not able to find high quality solutions (within the 100 generated schedules) that

outperform the simple yet time efficient GA(AUF) approach.

Insert Table 2 About Here

4.3 Flexibility of our solution approach

In this section, we analyse the impact of all cost factors on the schedule quality and

test the ability to modify the cost input parameters to obtain production schedules satisfying

company specific objectives. In our experiment, we carefully change the cost input factors ei,

l i, uj,
−
lnb and +

lnb and test their influence on the total quality of the schedule. More precisely,

we multiply the original cost factor values (see section 4.1) by a factor 0.25, 0.5, 1, 2, 4 or 8

respectively, holding all other cost factors constant, and measure the resulting schedule

quality by the following four performance measures:

25

Average lateness: measure the average lateness
L

C of all orders over the complete

scheduling horizon (in days).

Average earliness: measures the average earliness
E

C of all orders over the complete

scheduling horizon (in days).

Average utilisation: measures the average machine utilisation/capacity ratio as

∑∑∑
= = = −∆+

=
nri

i

nrj

j

nrk

k jkjk

ijkijU

cc

xpt
C

1 1 1 1

.

Average production flow: measures the ratio of all production flow deviations and all pre-

specified flow quantities as

∑∑∑

∑∑∑

= = =

= = ==
nrl

l

nrn

n

nrm

m

nrl

l

nrn

n

nrm

mF

F

F

C

1 1 1

1 1 1

nm

nm

l

l
.

Note that this experiment has also been set up to validate the quality of our cost reduction

estimates L
ijkCR , E

ijkCR , U
ijkCR and F

ijkCR , since these estimates will influence the objective function of

the knapsack problem and hence, the quality of the constructed schedule. Figure 5 displays the results

for the problem instances with 8,000 orders and 10 different random machine assignments. All other

problem instances or machine assignment procedures reveal similar results.

Insert Figure 5 About Here

Figure 5 clearly shows that the schedule quality, expressed in terms of the four

performance measures, clearly depends on the input cost factors. All figures show an

improved performance for the corresponding input factor (e.g. figure 5(a) shows an improved

average lateness for increasing values for the unit lateness cost l i, figure 5(b) shows an

improved average earliness for increasing value for the unit earliness cost ei, etc…).

26

This result illustrates the quality of our cost reduction estimates (see section 3.1) and

the ability of the users of the scheduling algorithm to influence and define the schedule quality

(the importance of each part of the multiple objective) by modifying the input cost factors.

Note that the four cost factors of the multiple objective function not always show a trade-off.

Figures 5(a) and 5(c) show that increasing importance of order lateness costs has a beneficial

effect on the order lateness as well as on the average machine utilisation, and vice versa.

Hence, both objectives are correlated as they stimulate earliest start schedules.

5 CONCLUSIONS

In this paper, we presented a finite capacity production scheduling algorithm for an

integrated steel company located in Belgium. The algorithm takes various case-specific

constraints into account and aims at the optimisation of multiple objectives.

The algorithm consists of two solution steps. A machine assignment step assigns each

order to a unique machine for each production step. We have tested three different machine

assignment methods, each taking various cost factors into account. The second step constructs

a schedule where each operation of all orders is assigned to a particular day, given the

assigned machines of the previous step. To determine which orders should be selected for

scheduling at each machine during each day, we construct knapsack problems that take

capacity constraints, precedence constraints and set-up constraints as well as the multiple

objectives (lateness costs, earliness costs, utilisation costs and flow costs) into account.

We have tested our algorithm on a randomly generated dataset and have shown that

our algorithm is flexible towards the user in terms of input cost parameters. Moreover, we

show that a local search machine assignment (step 1) combined with an optimal knapsack

solver (step 2) leads to the best performing results.

27

ACKNOWLEDGEMENTS

We would like to thank Krist Blomme, (member of SYMO (Systems and Models),

specialist in line scheduling) and Alain Zegers (member of SYMO, specialist in line

scheduling) of Arcelor Gent for drawing our attention to the challenging nature of the

production scheduling project and for giving us the permission to use the data of the project.

We are also grateful to Frederik Fransoo (member of SYMO, specialist in production

scheduling) for providing us information about the data and for the numerous conversations in

constructing new fictive data that reflects the real-life characteristics of the production

scheduling environment.

28

REFERENCES

Dijkstra, E.W., 1959. A note on two problems in connexion with graphs, Numerische

Mathematik., 1, 269-271.

Rahimifard, S. and Newman, S., 2000. A reactive multi-flow approach to the planning and

control of flexible machining facilities, International Journal of Computer Integrated

Manufacturing, 13 (4), 311-323.

Venkateswaran, J., Son, Y., Jones, A., 2004. Hierarchical production planning using a hybrid

system dynamic-discrete event simulation architecture, Proceedings of the 2004 Winter

Simulation Conference, 1094-1102.

Sum, C. and Hill, A., 1993. A new framework for manufacturing planning and control

systems, Decision sciences, 24 (4), 739-760.

Pandey, P.C, Yenradee, P. and Archariyapruek, S., 2000. A finite capacity material

requirements planning system, Production planning & control, 11 (2), 113-121.

Neureuther, B., Polak, G. and Sanders, N., 2004. A hierarchical production plan for a make-

to-order steel fabrication plant, Production Planning & Control, 15 (3), 324-335.

Bitran, G. and Hax, A., 1981. Disaggregation and resource allocation using convex knapsack

problems with bounded variables, Management Science, 27 (4), 431-441.

Adenso-Diaz, B. and Laguna, M., 1996. Modelling the load levelling problem in master

production scheduling for MRP systems, International Journal of Production Research, 34 (2),

483-493.

Billington, P., McClain, J. and Joseph Thomas, L., 1983. Mathematical programming

approaches to capacity-constrained MRP Systems: Review, formulation and problem

reduction, Management Science, 29 (10), 1126-1141.

Taal, M. and Wortmann, J., 1997. Integrating MRP and finite capacity planning, Production

Planning & Control, 8 (3), 245-254.

Rom, W., Icmeli Tukel, O., Muscatello, J., 2002. MRP in a job shop environment using a

resource constrained project scheduling model, 30, 275-286.

29

Fry T.D., Cox J.F. and Blackstone J.H., 1992. An analysis and discussion of the optimised

production technology software and its use, Production and Operations Management, 1, 229-

242.

Segerstedt A., 1996. A capacity-constrained multi-level inventory and production control

problem, International Journal of Production Economics, 45, 440-461.

Schmitt, T.G, Berry W.L. and Vollman T.E., 1984. An analysis of capacity planning

procedures for a material requirements planning system, Decision Sciences, 15, 522-541.

Kolesar, J., 1967. A branch and bound algorithm for the knapsack problem. Management

Science, 13 (9), 723-735.

Lee, H.S., Murthy, S.S., Haider, S.W., Morse, D.V., 1996. Primary production scheduling at

steelmaking industries. IBM Journal of Research Development, 40 (2), 231-252.

Tang, L., Liu, J., Rong, A., Yang, Z., 2001. A review of planning and scheduling systems and

methods for integrated steel production, European Journal of Operational Research, 133, 1-20.

Harjunkoski, I., Grossman, I.E., 2001. A decomposition approach for the scheduling of a steel

plant production, Computers & Chemical Engineering, 25, 1647-1660.

Wiers, V., 2002. A case study on the integration of APS and ERP in a steel processing plant,

Production planning & control, 13 (6), 552-560.

Okano, H., Davenport, 1.J., Trumbo, M., Reddy, C., Yoda, K., Amano, M., 2004. Finishing

line scheduling in the steel industry, IBM journal of research and development, 48 (5), 811-

830.

Hirschberg, D.S., Wong, C.K., 1976. A polynomial-time algorithm for the knapsack problem

with two variables, Journal of the ACM, 23 (1), 147-154.

30

FIGURE 1

An example steel shop (left (a)) and an example order routing network (right (b))

1 2 3 4

1

2

3 5 6

7

1

2

3

4

5
7

8

9

10

11

4

6

0 12

1 2 3 4

1

2

3 5 6

7

1

2

3

4

5
7

8

9

10

11

4

6

0 12

1 2 4
1

2

3 6

74

1

2

3

4

5

6

10

11

12

13

17

5

7

+∞

8

10

3|5

2|8

2|7

3|8

2|5

3|6

2|8

3|7

6|4

5|2

2|0

+∞|+∞

j
dijj’ |acijj’

ptij

j’

0 12

= production step

= machine group

= machine

q

n

j

1 2 4
1

2

3 6

74

1

2

3

4

5

6

10

11

12

13

17

5

7

+∞

8

10

3|5

2|8

2|7

3|8

2|5

3|6

2|8

3|7

6|4

5|2

2|0

+∞|+∞

j
dijj’ |acijj’

ptij

j’

0 12

= production step

= machine group

= machine

q

n

j

31

FIGURE 2

Our solution approach

1

2

3

4

5

6

10

11

0 12

12

13

17

5

7

+∞

8

10

3|5

2|8

2|7

3|8

2|5

3|6

2|8

3|7

6|4

5|2

2|0

+∞|+∞

1

2

3

4

5

6

10

11

0 12

12

13

17

5

7

+∞

8

10

3|5

2|8

2|7

3|8

2|5

3|6

2|8

3|7

6|4

5|2

2|0

+∞|+∞

1

2

3

4

7

8

9

10

11

0 12

14

16

+∞

+12

2|6

3|8

4|3

4|9

3|2

5|6

2|2
3|4

1|3

3|5
6|9

4|7

3|4

5|5

+∞|+∞

4|2

6|4

2|2

12

10

18

15

101

2

3

4

7

8

9

10

11

0 12

14

16

+∞

+12

2|6

3|8

4|3

4|9

3|2

5|6

2|2
3|4

1|3

3|5
6|9

4|7

3|4

5|5

+∞|+∞

4|2

6|4

2|2

12

10

18

15

10

Order routing network
Order 1 Order 2

Machine assignment

Schedule

Order 1 Order 2

Step 1: Machine assignment problem

Step 2: Scheduling problem

3 6 10

17
3|6

7

2|0

8

3 6 10

17
3|6

7

2|0

8

2 8 10

16
3|2

18

4|2

10

2 8 10

16
3|2

18

4|2

10

Order 1: x1,0,2 = x1,3,2= x1,6,5 = x1,10,6= x1,12,6= 1 Order 2: x2,0,2 = x2,2,2= x2,8,5 = x2,10,9= x2,12,9= 1

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10k = 11k = 12k = 13k = 14 …
0 … 1,2,… … … … … … … … … … … … … …
1 … … … … … … … … … … … … … … …
2 … 2,… … … … … … … … … … … … … …
3 … 1,… … … … … … … … … … … … … …
4 … … … … … … … … … … … … … … …

3 5 … … … … … … … … … … … … … … …
4 6 … … … … 1, … … … … … … … … … … …

7 … … … … … … … … … … … … … … …
8 … … … … 2,… … … … … … … … … … …
9 … … … … … … … … … … … … … … …

6 10 … … … … … … 1,… … 2,… … … … … … …
7 11 … … … … … … … … … … … … … … …

12 … … … … … … 1,… … 2,… … … … … … …

4

1
1

2

2

3 5

m = 1 m = 2
q n j

.

32

FIGURE 3

An estimate for order lateness

k

Pijk

LSTij - α*rps LSTij

0 %

100 %

k

Pijk

LSTij - α*rps LSTij

0 %

100 %

33

FIGURE 4

A fictive example to illustrate the calculation of the production flow cost reduction

l

1 40 4 8 10
2 30 2 6 20
3 50 8 10 52

1-lnmlnm ff ∆+ −
lnb +

lnb ∑ ∑ ∑
∈ ∈

<
∈O

l
JN
n mFi Sj

kk
Wk

kjii xv
' '

'
'

''''

40

30

50

1 | 8
(1.10)

6 | 9
(0.76)

8 | 13
(0.63)

2 | 7
(0.93)

3 | 11
(0.90)

7 | 6
(0.67)

4 | 12
(0.85)

5 | 9
(0.80)

9 | 8
(0.57)

i

10

22

13

0

20

3

-8

-14

52

-14

-23

-31

1 2 3 l

1-lnmlnm ff ∆+

∑ ∑ ∑
∈ ∈

<
∈O

l
JN
n mFi Sj

kk
Wk

kjii xv
' '

'
'

''''

)(iδ
iv|

iEF∆

.

34

TABLE 1

Comparison between exact and heuristic knapsack procedure

nri
exact heuristic exact heuristic exact heuristic exact heuristic exact heuristic

Avg. CPU 0.04s 0.04s 0.08s 0.07s 0.18s 0.16s 0.47s 0.38s 1.70s 0.84s
Avg. TC 448,739 453,800 802,156 809,077 1,510,731 1,519,521 2,928,450 2,937,001 5,721,389 5,730,693
Avg. C A

126,557 126,557 253,846 253,846 506,713 506,713 1,009,4351,009,435 2,024,264 2,024,264
Avg. C L

23,127 22,829 30,735 30,751 53,344 53,897 90,705 90,806 166,188 166,402
Avg. C E

29,339 28,828 64,943 64,218 132,080 131,066 277,023 275,966 565,306 564,322
Avg. C U

129,451 135,275 212,094 219,668 374,385 383,357 701,847 711,758 1,368,577 1,379,292
Avg. C F

140,264 140,309 240,536 240,593 444,208 444,487 849,440 849,035 1,597,052 1,596,411

2000 4000 8000 160001000

35

TABLE 2

Comparison of different machine assignment approaches

nri 1000 2000 4000 8000 16000

Random 0.04s 0.08s 0.18s 0.47s 1.70s
GA(AC) 0.07s 0.13s 0.30s 0.92s 2.46s

LSA 5.54s 9.86s 25.39s 84.63s 229.38s

GA(UAF) 0.17s 0.32s 0.88s 2.54s 6.60s

Random 448,739 802,156 1,510,731 2,928,450 5,721,389
GA(AC) 362,651 645,390 1,209,376 2,358,950 4,604,384

LSA 331,868 605,474 1,174,837 2,330,723 4,570,717

GA(UAF) 360,407 638,359 1,192,511 2,322,494 4,507,826

Random 126,557 253,846 506,713 1,009,435 2,024,264

GA(AC) 43,110 86,780 173,116 345,530 691,843
LSA 45,013 88,945 174,456 346,356 692,463
GA(UAF) 53,739 103,660 205,559 410,145 820,593
Random 23,127 30,735 53,344 90,705 166,188
GA(AC) 17,837 25,501 46,462 82,581 155,232
LSA 15,440 22,276 43,245 81,326 152,738
GA(UAF) 24,974 34,900 61,035 112,022 209,644
Random 29,339 64,943 132,080 277,023 565,306
GA(AC) 27,164 60,428 119,746 255,733 514,755
LSA 27,211 59,645 120,009 255,524 514,987
GA(UAF) 23,192 49,362 99,788 198,063 399,730
Random 129,451 212,094 374,385 701,847 1,368,577
GA(AC) 118,611 193,099 340,400 634,104 1,248,311
LSA 113,521 189,348 337,780 634,050 1,249,648
GA(UAF) 105,974 171,961 301,392 568,778 1,110,039
Random 140,264 240,536 444,208 849,440 1,597,052
GA(AC) 155,930 279,582 529,652 1,041,002 1,994,244
LSA 130,684 245,260 499,346 1,013,468 1,960,880
GA(UAF) 152,527 278,477 525,736 1,033,487 1,967,819

Avg. C E

Avg. C U

Avg. C F

Avg. CPU

Avg. TC

Avg. C A

Avg. C L

.

36

FIGURE 5

Influence of the input cost parameters on the performance measures

(a)

(c)

(b)

(d)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.25 0.5 1 2 4 8 l i

Avg. lateness

Avg. earliness

Avg. utilisation

Avg. production flow

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.25 0.5 1 2 4 8 e i

Avg. lateness

Avg. earliness

Avg. utilisation

Avg. production flow

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.25 0.5 1 2 4 8 u j

Avg.lateness

Avg. earliness

Avg. utilisation

Avg. production flow

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.25 0.5 1 2 4 8 b -
ln / b +

ln

Avg. lateness

Avg. earliness

Avg. utilisation

Avg. production flow

