Measuring the costs and coverage of SME and entrepreneurship policy: A pioneering study
Publication type
FT ranked journal articlePublication Year
2014Journal
Entrepreneurship: Theory and PracticePublication Volume
38Publication Issue
4Publication Begin page
941Publication End page
957
Metadata
Show full item recordAbstract
Since customer relationship management (CRM) plays an increasingly important role in a company’s marketing strategy, the database of the company can be considered as a valuable asset to compete with others. Consequently, companies constantly try to augment their database through data collection themselves, as well as through the acquisition of commercially available external data. Until now, little research has been done on the usefulness of these commercially available external databases for CRM. This study will present a methodology for such external data vendors based on random forests predictive modeling techniques to create commercial variables that solve the shortcomings of a classic transactional database. Eventually, we predicted spending pleasure variables, a composite measure of purchasing behavior and attitude, in 26 product categories for more than 3 million respondents. Enhancing a company’s transactional database with these variables can significantly improve the predictive performance of existing CRM models. This has been demonstrated in a case study with a magazine publisher for which prospects needed to be identified for new customer acquisition.Keyword
Customer Relationship ManagementKnowledge Domain/Industry
Entrepreneurshipae974a485f413a2113503eed53cd6c53
10.1111/etap.12037