Show simple item record

dc.contributor.authorHallin, Marc
dc.contributor.authorSwan, Yvik
dc.contributor.authorVerdebout, Thomas
dc.contributor.authorVeredas, David
dc.date.accessioned2017-12-02T14:53:16Z
dc.date.available2017-12-02T14:53:16Z
dc.date.issued2013
dc.identifier.doi10.1016/j.jeconom.2012.08.016
dc.identifier.urihttp://hdl.handle.net/20.500.12127/5222
dc.description.abstractClassical estimation techniques for linear models either are inconsistent, or perform rather poorly, under -stable error densities; most of them are not even rate-optimal. In this paper, we propose an original one-step R-estimation method and investigate its asymptotic performances under stable densities. Contrary to traditional least squares, the proposed R-estimators remain root- consistent (the optimal rate) under the whole family of stable distributions, irrespective of their asymmetry and tail index. While parametric stable-likelihood estimation, due to the absence of a closed form for stable densities, is quite cumbersome, our method allows us to construct estimators reaching the parametric efficiency bounds associated with any prescribed values of the tail index and skewness parameter , while preserving root- consistency under any as well as under usual light-tailed densities. The method furthermore avoids all forms of multidimensional argmin computation. Simulations confirm its excellent finite-sample performances.
dc.language.isoen
dc.subjectStable Distributions
dc.subjectLocal Asymptotic Normality
dc.subjectLAD Estimation
dc.subjectR-Estimation
dc.subjectAsymptotic Relative Efficiency
dc.titleOne-step R-estimation in linear models with stable errors
dc.identifier.journalJournal of Econometrics
dc.source.volume172
dc.source.issue2
dc.source.beginpage195
dc.source.endpage204
vlerick.knowledgedomainAccounting & Finance
vlerick.typearticleJournal article
dc.identifier.vperid192295
dc.identifier.vperid192296
dc.identifier.vperid192298
dc.identifier.vperid181874
dc.identifier.vpubid6471
vlerick.publicationvalue.BB


Files in this item

Thumbnail
Name:
Publisher version

This item appears in the following Collection(s)

Show simple item record