Show simple item record

dc.contributor.authorVan Eynde, Rob
dc.contributor.authorVanhoucke, Mario
dc.date.accessioned2020-11-30T08:18:55Z
dc.date.available2020-11-30T08:18:55Z
dc.date.issued2020en_US
dc.identifier.issn1094-6136
dc.identifier.doi10.1007/s10951-020-00651-w
dc.identifier.urihttp://hdl.handle.net/20.500.12127/6591
dc.description.abstractIn this paper, we propose a new dataset for the resource-constrained multi-project scheduling problem and evaluate the performance of multi-project extensions of the single-project schedule generation schemes. This manuscript contributes to the existing research in three ways. First, we provide an overview of existing benchmark datasets and classify the multi-project literature based on the type of datasets that are used in these studies. Furthermore, we evaluate the existing summary measures that are used to classify instances and provide adaptations to the data generation procedure of Browning and Yassine (J Scheduling 13(2):143-161, 2010a). With this adapted generator we propose a new dataset that is complimentary to the existing ones. Second, we propose decoupled versions of the single-project scheduling schemes, building on insights from the existing literature. A computational experiment shows that the decoupled variants outperform the existing priority rule heuristics and that the best priority rules differ for the two objective functions under study. Furthermore, we analyse the effect of the different parameters on the performance of the heuristics. Third, we implement a genetic algorithm that incorporates specific multi-project operators and test it on all datasets. The experiment shows that the new datasets are challenging and provide opportunities for future research.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectMulti-project Schedulingen_US
dc.subjectPortfolio Schedulingen_US
dc.subjectSummary Measuresen_US
dc.subjectDecoupled Schedulingen_US
dc.subjectBenchmark Dataen_US
dc.titleResource-constrained multi-project scheduling: Benchmark datasets and decoupled schedulingen_US
dc.identifier.journalJournal of Schedulingen_US
dc.source.volume23en_US
dc.source.beginpage301en_US
dc.source.endpage325en_US
dc.contributor.departmentFaculty of Economics and Business Administration, Ghent University, Tweekerkenstraat 2, 9000, Ghent, Belgiumen_US
dc.contributor.departmentUCL School of Management, University College London, 1 Canada Square, London, E14 5AA, UKen_US
dc.identifier.eissn1099-1425
vlerick.knowledgedomainOperations & Supply Chain Managementen_US
vlerick.typearticleJournal article with impact factoren_US
vlerick.vlerickdepartmentTOMen_US
dc.identifier.vperid58614en_US


This item appears in the following Collection(s)

Show simple item record