Show simple item record

dc.contributor.authorDeprez, Laurens
dc.contributor.authorAntonio, Katrien
dc.contributor.authorArts, Joachim
dc.contributor.authorBoute, Robert
dc.date.accessioned2023-02-15T11:25:44Z
dc.date.available2023-02-15T11:25:44Z
dc.date.issued2023en_US
dc.identifier.issn0167-6377
dc.identifier.doi10.1016/j.orl.2023.01.006
dc.identifier.urihttp://hdl.handle.net/20.500.12127/7163
dc.description.abstractWe describe a data-driven approach to optimize periodic maintenance policies for a heterogeneous portfolio with different machine profiles. When insufficient data are available per profile to assess failure intensities and costs accurately, we pool the data of all machine profiles and evaluate the effect of (observable) machine characteristics by calibrating appropriate statistical models. This reduces maintenance costs compared to a stratified approach that splits the data into subsets per profile and a uniform approach that treats all profiles the same.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPreventive Maintenanceen_US
dc.subjectData Poolingen_US
dc.subjectProportional Hazardsen_US
dc.subjectSmall Dataen_US
dc.titleData-driven preventive maintenance for a heterogeneous machine portfolioen_US
refterms.dateFOA2023-02-15T11:25:45Z
dc.identifier.journalOperations Research Lettersen_US
dc.source.volume51en_US
dc.source.issue2en_US
dc.source.beginpage163en_US
dc.source.endpage170en_US
dc.contributor.departmentLuxembourg Centre for Logistics and Supply Chain Management, University of Luxembourg, Luxembourgen_US
dc.contributor.departmentFaculty of Economics and Business, KU Leuven, Belgiumen_US
dc.contributor.departmentFaculty of Economics and Business, University of Amsterdam, the Netherlandsen_US
dc.contributor.departmentVCCM, Flanders Make, Belgiumen_US
dc.identifier.eissn1872-7468
vlerick.knowledgedomainOperations & Supply Chain Managementen_US
vlerick.typearticleJournal article with impact factoren_US
vlerick.vlerickdepartmentTOMen_US
dc.identifier.vperid102358en_US


Files in this item

Thumbnail
Name:
Publisher version
Thumbnail
Name:
Boute_R_ORLetters_Data-drivenP ...
Size:
453.1Kb
Format:
PDF
Description:
main article

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International