• Login
    View Item 
    •   Vlerick Repository Home
    • Research Output
    • Articles
    • View Item
    •   Vlerick Repository Home
    • Research Output
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Vlerick RepositoryCommunities & CollectionsPublication DateAuthorsTitlesSubjectsKnowledge Domain/IndustryThis CollectionPublication DateAuthorsTitlesSubjectsKnowledge Domain/Industry

    My Account

    LoginRegister

    Contact & Info

    ContactVlerick Journal ListOpen AccessVlerick Business School

    Statistics

    Display statistics

    Optimizing production capacity and safety stocks in general acyclic supply chains

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Publisher version
    View Source
    Access full-text PDFOpen Access
    View Source
    Check access options
    Check access options
    Publication type
    Journal article with impact factor
    Author
    Ghadimi, Foad
    Aouam, Tarik
    Vanhoucke, Mario
    Publication Year
    2020
    Journal
    Computers and Operations Research
    Publication Volume
    120
    Publication Issue
    August
    
    Metadata
    Show full item record
    Abstract
    This paper addresses the joint optimization of production capacity and safety stocks in supply chains under the guaranteed service approach (GSA). The integrated problem is formulated as a mixed integer nonlinear program (MINLP) and solution procedures are proposed in the cases of general acyclic and spanning tree networks. For general acyclic supply chains, the integrated problem is solved using a Lagrangian decomposition method which iteratively solves capacity planning and safety stock placement subproblems, and adds budget feasibility constraints to strengthen the Lagrangian decomposition lower bound. When the supply chain has a spanning tree structure, an efficient Lagrangian relaxation heuristic dualizes the budget constraint and solves the relaxed problem using a dynamic programming algorithm. Computational experiments on real-world instances show that the Lagrangian decomposition method is able to solve all instances within 0.1% optimality, while a state-of-the-art solver is unable to provide feasible solutions for large instances. In the case of spanning tree networks, the proposed Lagrangian relaxation heuristic finds optimal or near-optimal solutions and greatly improves running time in comparison to the Lagrangian decomposition method. In addition, numerical experiments show that savings can be achieved through joint optimization of capacity and safety stocks.
    Keyword
    Supply Chain Management, Production Capacity, Safety Stocks, Guaranteed Service, Lagrangian Decomposition, Lagrangian Relaxation
    Knowledge Domain/Industry
    Operations & Supply Chain Management
    DOI
    10.1016/j.cor.2020.104938
    URI
    http://hdl.handle.net/20.500.12127/6593
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.cor.2020.104938
    Scopus Count
    Collections
    Articles

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.